

Manual

Spectrometer Probe V3

March 2022 Release

Table of Contents

1	General	6	
2	Safety Guidelines7		
2.1 2.2	Declaration of Conformity Special Hazard Warning		7 7
3	Technical Description	8	
3.1	Intended Use		8
3.2	Functional Principle		8
3.3	Product		9
3.4	Storage and Transport		12
3.5	Scope of Delivery		12
3.6	Product Updates, Other		12
4	Installation	13	
4.1	Environment		13
4.2	Mounting		13
4.2.1	Mounting with Probe Carrier for submersed Installation (F-110-V3 / F-120-V3)		14
4.2.2	Mounting with Probe Carrier for submersed Installation (F-140-V3 / F-150-V3)		16
4.2.3	Monting of Railing Bracket / Fixing Adapter (F-15)		18
4.2.4	Mounting in Flow Cell for Clean Water (F-445-V3)		19
4.2.5	Mounting in Flow Cell for Clean Water with autobrush (F-446-V3)		20
4.2.6	Mounting in Flow Cell for Waste Water (F-48-V3)		22
4.3	Automatic Probe Cleaning		23
4.3.1	Connection of compressed Air Cleaning		23
4.3.2	Mounting of ruck::sack (F-146-RS)		25
5	Initial Startup	27	
5.1	Controller for Operation		27
5.2	Connection to the Controller		28
5.3	Probe Initialisation		28
5.3.1	Probe Initialisation using con::lyte		28
5.3.2	Probe Initialisation using moni::tool		29
5.3.3	Probe Initialisation using con::nect		31
5.4	lo::Tool		32
5.4.1	General Overview of Io::Tool		34
5.4.2	Measurement Settings and Sleep Mode using Io::Tool		36

5.5	Probe Parameterisation		37
5.5.1	Parameter Measuring Ranges in Clean Water		37
5.5.2	Parameter Measuring Ranges in Municipal Waste Water		39
5.5.3	Parameter Measuring Ranges in Industrial Waste Water		40
5.5.4	Available Parameters for nitro::lyser		40
5.5.5	Available Parameters for ozo::lyser		40
5.5.6	Available Parameters for carbo::lyser		41
5.5.7	Available Parameters for multi::lyser		41
5.5.8	Available Parameters for uv::lyser		41
5.5.9	Probe Parameterisation using con::lyte		42
5.5.10	Probe Parameterisation using moni::tool		43 44
5.5.11	Probe Parameterisation using Io::Tool		44
6	Calibration	45	
6.1	Types of Calibration		46
6.2	Performing a Calibration		46
6.2.1	Calibration using con::lyte		46
6.2.2	Calibration using moni::tool		47
6.2.3	Calibration using Io::Tool		49
7	Data Management	51	
7.1	Data Storage		51
7.2	Data Transfer		51
7.2.1	Data Transfer via visu::tool		52
7.2.2	Data Transfer via lo::Tool		52
7.2.3	Data Transfer via FTP, SFTP or SCP		53
7.3	Data Visualisation		54
7.3.1	Data Visualisation using Io::Tool		54
8	Function Check	57	
8.1	Check of System / Monitoring Station		57
8.2	Check of Readings		58
8.3	Check of Probe / Sensor Integrity (Function Check)		59
8.3.1	Performing a Function Check using con::lyte		61
8.3.2	Performing a Function Check using moni::tool		62
8.3.3	Performing a Function Check using Io::Tool		63
9	Maintenance	64	
9.1	Cleaning		64
9.2	Reference Measurement		65
9.2.1	Reference Measurement with Io::Tool		66
9.2.2	Configuration of Reference Measurement with Io::Tool		66
9.2.3	New Reference Measurement with Io::Tool		67

Troubleshooting

10

70

Accessories	82
Return Consignment (RMA - Return Material Authorization)	81
Reboot and Factory Reset of Spectrometer Probe	81
Software Update	80
Check of Device Settings using Io::Tool	78
Check of Device Settings using moni::tool	77
Check of Device Settings using con::lyte	77
Device Settings	76
Error Messages / Statusbits on Controller for Operation	75
Error / Status Messages in Io::Tool	72
Error / Status Messages and Logbook	71
LED Ring	71
Typical Error Pattern	70
	LED Ring Error / Status Messages and Logbook Error / Status Messages in Io::Tool Error Messages / Statusbits on Controller for Operation Device Settings Check of Device Settings using con::lyte Check of Device Settings using moni::tool Check of Device Settings using Io::Tool Software Update Reboot and Factory Reset of Spectrometer Probe Return Consignment (RMA - Return Material Authorization)

11.1.1	Extension Cable	82
11.1.2	Connection Cable for Spectrometer Probe V3 to MIL-Plug	82
11.1.3	Connection Cable for Spectrometer Probe V2 to M12-Plug	82
11.1.4	Spectrometer Probe Mounting (inclined / horizontal)	83
11.1.5	Spectrometer Probe Mounting (vertical)	84
11.1.6	Railing Bracket / Fixing Adapter	84
11.1.7	Flow Cell Setup Clean Water	85
11.1.8	Flow Cell Setup autobrush	86
11.1.9	Flow Cell Setup Waste Water	87
11.1.10	System Panel micro::station	87
11.2	Automatic Cleaning	88
11.2.1	Pressure Connection Set	88
11.3	Maintenance	88
11.3.1	Cleaning Brush	88
11.3.2	Cleaning Agent	88
11.3.3	Multifunctional Slide	89

12 Technical Specifications

90

1 General

This manual contains, firstly, general information (chapter 1) and safety guidelines (chapter 2). The next chapter (chapter 3) provides a technical description of the s::can product itself as well as information regarding transport and storage of the product. In further chapters the installation (chapter 4) and the initial startup (chapter 5) are explained. Furthermore information regarding calibration of the device (chapter 6), data management (chapter 7), how to perform a function check (chapter 8) and maintenance (chapter 9) can be found in this manual. Information regarding troubleshooting (chapter 10), the available accessories (chapter 11) and the technical specifications (chapter 12) complete the document.

Each term in this document that is marked *italic and underlined*, can be found on the display of your controller for operation or as lettering on your s::can product.

In spite of careful elaboration this manual may contain errors or incompletion. s::can does not assume liability for errors or loss of data due to such faults in the manual. The original manual is published in English and German by s::can. This original manual serves as the reference in case discrepancies occur in versions of the manual after translation into third languages.

This manual and all information and figures contained therein are copyrighted. All rights (publishing, reproduction, printing, translation, storage) are reserved by s::can Messtechnik GmbH. Each reproduction or utilisation outside the permitted limits of the copyright law is not allowed without previous written consent from s::can Messtechnik GmbH. The reproduction of product names, registered trade names, designation of goods etc. in this manual does not imply that these names can be used freely by everyone; often these are registered trade marks, even if they are not marked as such.

This manual, at the time of its publication (see release date printed on the top of this document), concerns the s::can products listed in chapter 3. Information and technical specifications regarding these items in s::can manuals from earlier release dates are herewith replaced by this manual.

The electronic version (pdf-document) of this manual is available on the s::can Customer Portal (Services for Customer) of the s::can website (www.s-can. at).

s::can	Home	About	Applications	Products	Parameter	Services	Contact
			0	8		Ģ	
		Services	for Customers	Services for	Partner	Download Area	

2 Safety Guidelines

Installation, electrical connection, initial startup, operation and maintenance of any s::can product as well as complete s::can measuring systems must only be performed by qualified personnel. This qualified personnel has to be trained and authorised by the plant operator or by s::can for these activities. The qualified personnel must have read and understood this manual and have to follow the instructions contained in this manual.

For proper initial startup of complete s::can measuring systems, the manuals for the controller and software used for operation (e.g. con::lyte, con::cube, con::nect, moni::tool), the connected probes and sensors as well as the used additional devices (e.g. compressor) have to be consulted.

The operator has to obtain the local operating permits and has to comply with the joint constraints associated with these. Additionally, the local legal requirements have to be observed (e.g. regarding safety of personnel and means of labour, disposal of products and materials, cleaning, environmental constraints). Before putting the measuring device into operation, the operator has to ensure that during mounting and initial startup – in case they are executed by the operator himself – the local legislation and requirements (e.g. regarding electrical connection) are observed.

All s::can products are leaving our factory in immaculate technical and safety conditions. Inappropriate or not intended use of the product, however, can cause danger! The manufacturer is not responsible for damage caused by incorrect or unauthorised use. Any kind of manipulation of the instrument is strictly prohibited - except for the activities described in this document. Conversions and changes to the device must not be made, otherwise all certifications and guarantee / warranty become invalid. For details regarding guarantee and warranty please refer to our general conditions of business.

2.1 Declaration of Conformity

This s::can product has been developed, tested and manufactured for electromagnetic compatibility (EMC) and according to applicable European standards, as defined in the declaration of conformity.

CE-marks are applied on the device. The declaration of conformity related to this marking can be requested from s::can or your local s::can sales partner or can be downloaded from the s::can Customer Portal.

2.2 Special Hazard Warning

Because the s::can measuring systems are frequently installed in industrial and municipal waste water applications, one has to take care during mounting and demounting of the system, as parts of the device can be contaminated with dangerous chemicals or pathogenic germs. All necessary precautions should be taken to prevent endangering of one's health during work with the measuring device.

The light source of the s::can spectrometer probe emits visible light as well as UV-light, which is extremely dangerous for human eyes (health hazard!). Do not look into the pulsed light beam (e.g. directly or by using mirrors)!

As internal parts of the s::can spectrometer probe are under high voltage, the opening of the probe's housing can cause injury, is strictly forbidden and will cancel all guarantee / warranty.

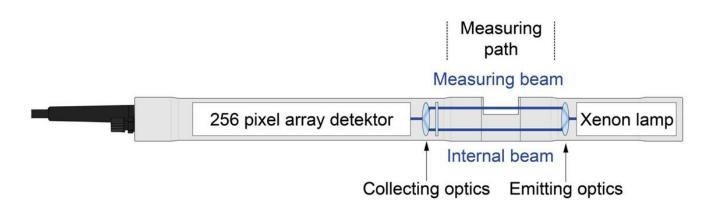
3 Technical Description

3.1 Intended Use

All s::can spectrometer probes are compact spectrometer probes, designed for continuous online measurement of absorption spectra (UV-Vis and derived parameters) with high quality. The spectrometer probes are available with three different optical path lengths (OPL).

These probes can be operated either directly submersed in liquid media (in-situ) or in by-pass via flow cell setup. Furthermore small samples of the medium can be measured with help of the multifunctional slide. Applications range from ultra pure water (DOC > 0,01 mg/l) up to industrial waste water with COD concentrations of several 1000 mg/l, and from single substance detection in sub-ppm concentrations up to surrogate and sum parameters in highest concentrations. The possibility to use the measured absorption spectrum (fingerprint) for spectral alarms completes the application field.

In all types of applications, the respective acceptable limits, which are provided in the technical specifications in the respective s::can manuals, have to be observed. All applications falling outside of these limits, and which are not authorised by s::can GmbH in written form, do not fall under the manufacturer's liability.


The device must only be used for the purpose described in this manual. Use in applications not described in this manual, or modification of the device without written agreement from s::can, is not allowed. s::can is not liable for claims following from such unauthorised use. In such a case, the risks are the sole responsibility of the operator.

3.2 Functional Principle

Spectrometer probes work according to the principle of UV-Vis spectrometry. Substances contained in the medium to be measured weaken a light beam that moves through this medium. The light beam is emitted by a lamp, and after contact with the medium its intensity is measured by a detector over a range of wavelengths. Each molecule of a dissolved substance absorbs radiation at a certain and known wavelength. The concentration of substances contained determines the size of the absorption of the sample – the higher the concentration of a certain substance, the more it will weaken the light beam.

Extinction or absorbance stands for a ratio of two light intensities: The intensity of light after the beam passed through the medium to be measured and the intensity of light determined after the beam passed through a so-called reference medium (distilled water). There is a linear increase in absorption with higher concentrations.

Every s::can spectrometer probe consists of three main components: the emitter unit, the measuring section and the receiving unit.

The central element of the emitter is a light source – a xenon flash lamp. This is complemented by an optical system to guide the light beam and an electronic control system to operate the lamp.

In the measuring section the light passes through the space between the two measuring windows which is filled with the measuring medium and interacts with it. A second light beam within the probe – called compensation beam - is guided across an internal comparison section. Every probe is a dual-beam measuring instrument, allowing the automatic compensation of disturbances in the measuring process (e.g. ageing of the flash lamp).

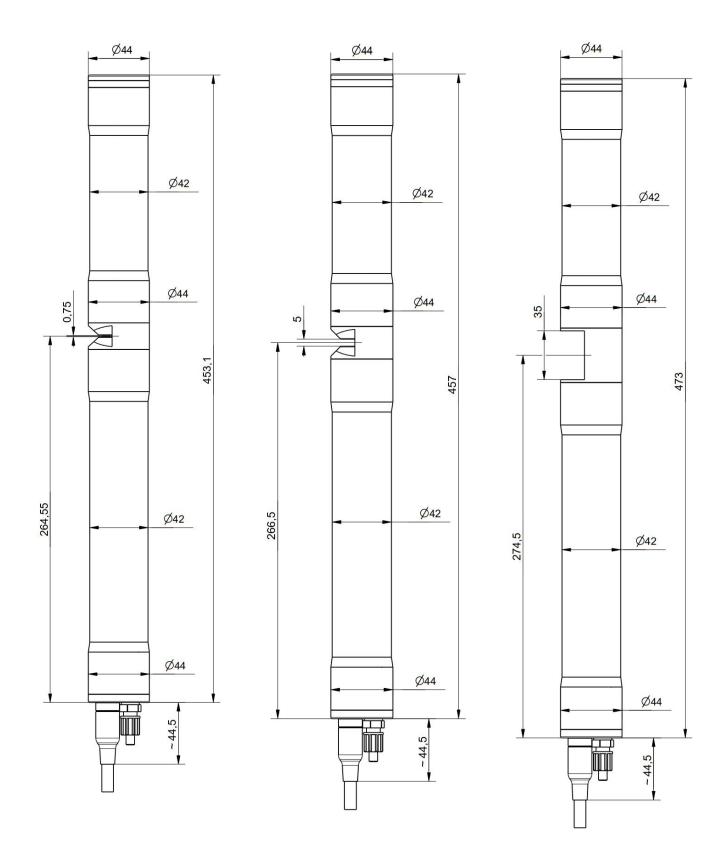
The receiving unit is located on the side of the spectrometer probe where the probe cable is attached, and it consists of two major components: the detector and the operating electronics. An optical system focuses the measuring and compensation beams on the entrance port of the detector. The light received by the detector is split up into its wavelengths and guided to the 256 fixed photodiodes, making the use of sensitive moving components unnecessary. The operating electronics contained in this part of the probe are responsible for controlling the entire measuring process and all the various processing steps required to edit and check the measuring signal and to calculate fingerprints and parameters values.

3.3 Product

The s::can spectrometer probes are offered in two different device variants (spectro::lyser and G-series) and three optical path lengths (OPL). The needed parameters can be configured individually for the different applications. Regarding detailed information of the device please refer to the technical specifications located at the end of this manual.

Part-no.	Type / specification
SP3-1-01-NO-xxx	UV-Vis spectro::lyser for waste water with 1 mm optical path length
SP3-1-05-NO-xxx	UV-Vis spectro::lyser for surface water with 5 mm optical path length
SP3-1-35-NO-xxx	UV-Vis spectro::lyser for drinking water with 35 mm optical path length
SP3-1-xx-NO-010	UV-Vis spectro::lyser with 1 m fixed sensor cable, for by-pass installation
SP3-1-xx-NO-075	UV-Vis spectro::lyser with 7.5 m fixed sensor cable, for submersed installation
SP3-1-xx-NO-150	UV-Vis spectro::lyser with 15 m fixed sensor cable, none standard, longer delivery time
N2-1-xx-NO-xxx	nitro::lyser (Turbidity or TSS and Nitrate)
U5-1-xx-NO-xxx	uv::lyser (Turbidity or TSS and up to four specified wavelengths)
O2-1-xx-NO-xxx	ozo::lyser (Turbidity or TSS and ozone)
C2-1-xx-NO-xxx	carbo::lyser (Turbidity or TSS and one organic parameter)
C3-1-xx-NO-xxx	carbo::lyser (Turbidity or TSS and two organic parameters)
M4-1-xx-NO-xxx	multi::lyser (Turbidity or TSS and Nitrate and two organic parameters)
Additional features	
V3-LOGGER	License fee for integrated data logger

Part-no.	Type of application	SP3	G.ser
1	municipal waste water influent / sewage	х	х
A	municipal waste water aeration basin	х	х
E	municipal waste water effluent	х	х
R	river water / surface water	х	х
G	ground water	х	х
0	sea water	х	
D	drinking water	х	х
Μ	dairy industry	х	
Р	paper industry influent	х	
Q	paper industry effluent	х	
В	brewery industry	х	
Х	industrial water	х	


Regarding detailed information of the measured parameters please refer to section 5.5.

The device is typified by a type label, as shown below, that contains the following information:

- Manufacturer's name and country of origin
- Several certification marks
- Device name
- QR code to s::can Support
- Part number (Type)
- Bar code
- Device serial number (S/N)
- Information on power supply
- Acceptable temperature limits
- Environment rating (IP)
- Maximal power consumption
- 1 Probe housing (lamp side)
- 2 Measuring section (OPL optical path length)
- 3 Probe housing (detector side)
- 4 Connection for automatic cleaning
- 5 Cable gland
- 6 Probe cable

Dimensions of probe in mm:

- OPL 1 mm (see left figure above)
- OPL 5 mm (see middle figure above)
- OPL 35 mm (see right figure above)

3.4 Storage and Transport

The temperature limits for device storage and transport, which are described in the section technical specifications, have to be observed at all times. The device shall not be exposed to strong impacts, mechanical loads or vibrations. The device should be kept free of corrosive or organic solvent vapours, nuclear radiation as well as electromagnetic radiation.

Damage to the device caused by wrong storage will not be covered by warranty.

Transport should be done in a packaging that protects the device (original packaging or protective covering if possible).

This product is marked with the WEEE symbol to comply with the European Union's Waste Electrical & Electronic Equipment (WEEE) Directive 2012/19/EC. The symbol indicates that this product should not be treated as household waste. It must be disposed and recycled as electronic waste. Please assist to keep our environment clean.

3.5 Scope of Delivery

Immediately upon receipt, please check the received consignment for completeness on the basis of the delivery note and check for any possible damage incurred during shipping. Please inform the delivering dispatcher and s::can immediately in case of any damages in transit.

The following parts should be included in the delivery:

- s::can spectrometer probe (part-no. according to section 3.3)
- Connection set for automatic cleaning (part-no. B-41-SENSOR)
- Cleaning brush (part-no. B-60-2 for OPL 5 and 35 mm)
- Multifunctional slide (part-no. E-421-V3 for all OPL)
- s::can manual spectrometer probe (part-no. S-30-M)

The following parts could be included in the delivery if ordered as an option:

- Adapter cable (part-no. C-32-V3, C-32-MIL)
- Extension cable (part-no. C-210-V3 or C-220-V3)
- con::nect box (part-no. B-33-012)
- Probe carrier (part-no. F-110-V3 and F-140-V3 for 45 degree installation or F-120-V3 and F-150-V3 for vertical installation)
- Fixing adapter for railing (part-no. F-15)
- Flow cell waste water (part-no. F-48-V3 for all OPL)
- Flow cell clean water (part-no. F-445-V3 for all OPL)
- Flow cell autobrush (part-no. F-446-V3 for OPL 35 mm or F-446-V3-TI for OPL 35 mm titanium)
- Cleaning valve (part-no. B-44 or B-44-2)
- s::can compressor (item-no. B-32-230, B-32-110 or B-32-012)

In case of incompleteness please contact your s::can sales partner immediately!

3.6 **Product Updates, Other**

The manufacturer reserves the rights to implement, without prior notice, technical developments and modifications in the light of continuous product care.

4 Installation

4.1 Environment

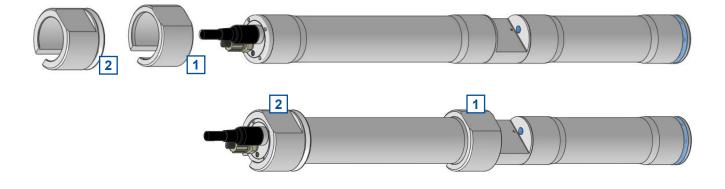
The correct installation of measuring instruments is an important prerequisite for satisfactory operation. Therefore the following checklist for the installation can be used to ensure that all sources for potential operational problems can be ruled out to the greatest possible extent during the installation, allowing the monitoring system to operate properly.

- Favourable flow conditions (little turbulence, acceptable flow rate, etc.)
- Unadulterated, representative measuring medium
- Measuring medium is in equilibrium state (no gas release, no precipitation, etc.)
- No external interferences (no electric and electro-magnetic interferences by leakage current, earth fault of pumps, electric motors, electric power lines, etc.)
- Easy accessibility (mounting, sampling, function check, demounting)
- Availability of sufficient space (probe / sensor, installation fitting, controller, etc.)
- Adherence to limit values (see technical specifications located at the end of this manual)
- Power supply for controller (operational reliability, voltage, power, peak free)
- Oil- and particle free compressed-air supply (optional for automatic probe / sensor cleaning)
- Best possible weather and splash water proof conditions of the controller used for operation
- Shortest possible distances between system components (probe / sensor controller compressed-air supply – energy supply)
- Correct dimensioning, mounting and protection of all cables and lines (non-buckling, no risk of stumbling, no damage etc.)

4.2 Mounting

When mounting the s::can spectrometer probe, please ensure that it is not possible that the measuring section (optical path) becomes blocked accidentally or by build-up of large particles present in the medium.

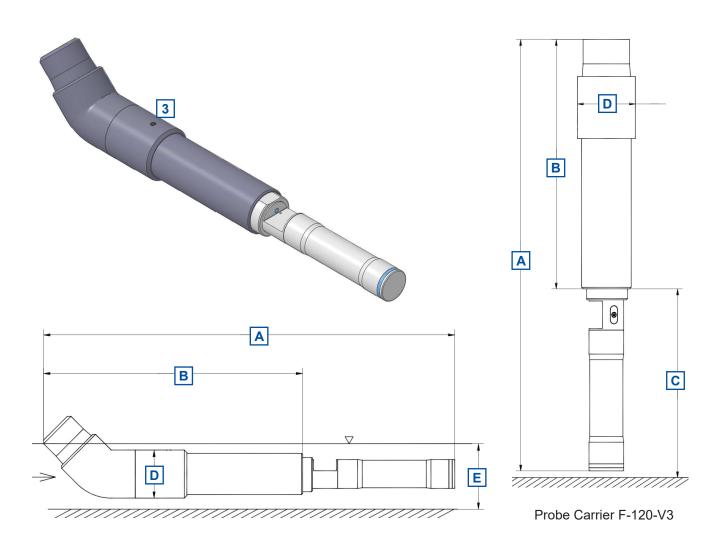
- Inclined or horizontal orientation (i.e. with measuring windows in vertical position) with plane face of the measuring section in vertical position. This will ensure no sedimentation of particles in the measuring section will take place and no gas bubbles will adhere to the measuring windows. The proper usage of an s::can probe carrier or s::can flow cell setup will ensure the correct position.
- Vertical orientation (i.e. with measuring windows in horizontal position) is only possible in applications with sufficient medium flow or automatic cleaning to ensure that no particles can sediment on the lower measuring window and no gas bubble might be captured within the measuring section.
- Flow velocity: < 3 m/s to avoid cavitations and therefore reduced measuring quality
 1 m/s when vertically mounted
- Abrasive solids (sand): <1 g/l
- Recommended water level: > 10 cm at horizontal installation
- The probe housing must not be in direct contact with other metals, to prevent the possibility of contact corrosion.


- The probe cable has to be protected appropriately against cuts or damage induced by foreign objects in the water.
- In case of shallow water and / or low flow velocities the compressed-air cleaning system may swirl up sediments surrounding the measuring site (e.g. at the sewerage bottom). As a result the state of the measuring medium will not be representative of the normal water quality directly after cleaning. To avoid this, the openings of the cleaning nozzles shall point upwards.

Even though the cable entry of the spectrometer probe is equipped with a protective mechanism against forces along the axis of the probe, the probe cable must never bear the weight of the spectrometer probe!

4.2.1 Mounting with Probe Carrier for submersed Installation (F-110-V3 / F-120-V3)

The submersed installation of a spectrometer probe using the specific probe carrier (part-no. F-110-V3 or F-120-V3) is performed by the following steps (see figures below also):



- 1 The shorter spacer ring has to be placed on the cable side of the probe housing close to the measuring section.
- 2 The longer spacer ring has to be placed on the cable side of the probe housing close to the probe cable with the groove towards the optical path.
- 3 After mounting the spacer rings, the compressed-air cleaning will be connection to the probe if used (see section 4.3).
- 4 Subsequently, the probe cable and the compressed-air hose are inserted into the probe carrier (e.g. with the help of a cable pulling device); when doing so, the cable plug and cleaning hose end must be protected against contamination.
- **5** The delivered M5 hexagon socket screw [3] has to be placed in the provided threaded hole, but should not be tightened yet.
- 6 Now slide the spectrometer probe into the probe carrier, so that the spacer ring close to the measuring section juts out 1.5 cm of the edge of the carrier. For horizontal installation the probe has to be placed in such a way that the

plane face of the measuring section has a perpendicular orientation so that there can be no sedimentation in the measuring section and so that air bubbles can escape upwards.

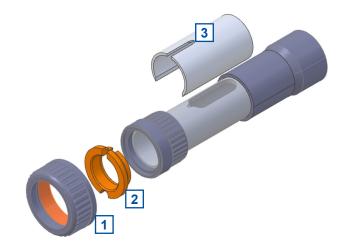
7 The probe can now be fixed in this position by means of the hexagon socket screw [3], which will fall into the V-shaped groove of the spacer ring sitting on the end of the probe where the cable is located.

Probe Carrier F-110-V3

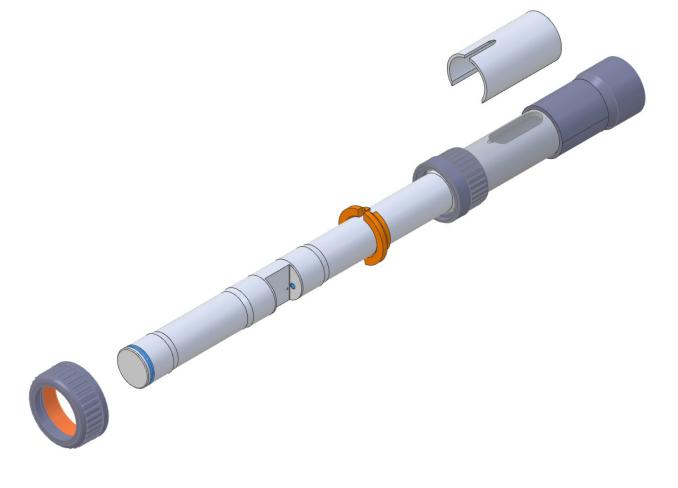
Carrier / OPL	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]
F-110-V3 / 1 mm	608.6	396		73.4	> 100
F-110-V3 / 5 mm	612.5	396		73.4	> 100
F-110-V3 / 35 mm	628.5	396		73.4	> 100
F-120-V3 / 1 mm	528.6	317	240	73.4	
F-120-V3 / 5 mm	532.5	317	240	73.4	
F-120-V3 / 35 mm	548.5	317	240	73.4	

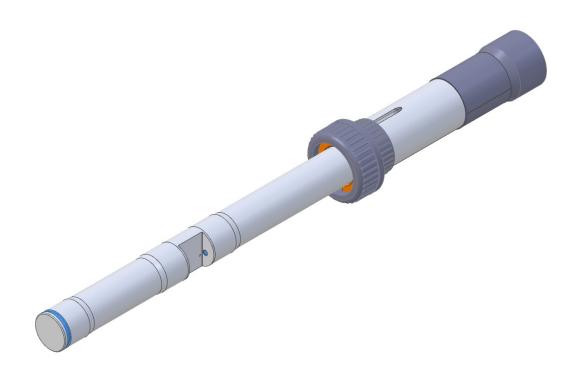
When necessary the probe carrier can be supplied with a tube extension that can simply be fixed to a railing by means of the fixing adapter (part-no. F-15). Appropriate measures must be taken to protect the probe cable and the compressed-air hose from damage due to buckling, abrasion etc. at the point where they exit the extension pipe.

For cleaning or checking the reference measurement (function check) using the multifunctional slide, the spectrometer probe can be slid out of the probe carrier slightly after loosening of the hexagon socket.



Probe Carrier V-120-V3


4.2.2 Mounting with Probe Carrier for submersed Installation (F-140-V3 / F-150-V3)


The submersed installation of a spectrometer probe using the specific probe carrier (part-no. F-140-V3 or F-150-V3) is performed by the following steps (see figures below also):

- 1 Unscrew the grey union nut [1] to disable the probe carrier into the single parts (see figure on the right).
- 2 The spacer ring [2] has to be placed on the cable side of the probe housing.
- 3 If necessary, connect the compressed-air cleaning to the probe (see section 4.3).
- 4 Subsequently, the probe cable and the compressed-air hose are inserted into the probe carrier (e.g. with the help of a cable pulling device); when doing so, the cable plug and cleaning hose end must be protected against contamination.

- 5 If a ruck::sack is used, slide the cable of the ruck::sack through the small slot [3] into the extension pipe (see section 4.3.2).
- 6 Now slide the spectrometer probe into the probe carrier as far as possible and fix it with the grey union nut. Ensure that the spacer ring is adjusted correctly. When using probe carrier for horizontal installation the probe has to be placed in such a way that the plane face of the measuring section has a perpendicular orientation so that there can be no sedimentation in the measuring section and so that air bubbles can escape upwards.

Probe Carrier V-150-V3

4.2.3 Monting of Railing Bracket / Fixing Adapter (F-15)

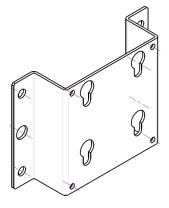
This section explains the mounting of the railing bracket (fixing adapter) with the extension pipe on the railing in case of a submersed installation.

The following parts are included in the delivery of the railing bracket F-15:

- 1 Fixing adapter for railing
- 2 Fixing adapter for extension pipe of sensor carrier
- **3** Fixing clamp for railing $(2^{1}/_{2})$ inch)
- 4 Fixing clamp for extension pipe of sensor carrier (50 mm)
- 5 Washers for fixing clamp
- 6 Screw nuts for fixing clamp
- 7 Safety pin for railing bracket

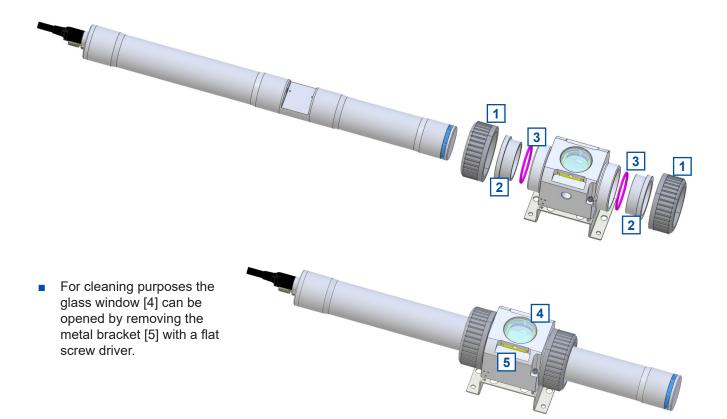
Once the sensor is installed in the sensor carrier with the extension pipe (see section 4.2.1 or 4.2.2) the mounting of the railing bracket is performed by the following steps:

- Fasten the fixing adapter for the railing [1] with the fixing clamp [3], the screw nuts and the washers, included in delivery, onto the railing.
- Fasten the other part of the fixing adapter [2] with the fixing clamp [4], the screw nuts and the washers, included in delivery, onto the extension pipe of the sensor carrier.
- Now insert the sensor with the extension pipe into the railing bracket from top.
- Secure the railing bracket with the locking pin [7] to prevent it from being pulled out unintenionally.
- If necessary, adjust the inclination of the extension pipe and the immersion depth of the sensor.
 To do this, loosen the corresponding screw nuts of the fixing clamps.

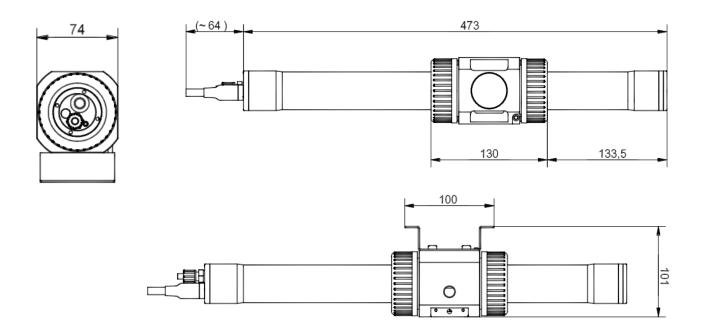


4.2.4 Mounting in Flow Cell for Clean Water (F-445-V3)

The flow cell can be mounted directly on a solid and flat surface (wall, mounting panel, etc.) using the mounting bracket (included in delivery). Once the mounting bracket is fixed the complete flow cell can easily be removed by unscrewing the safety screw (M4x45).


Please note, that the spectrometer probe should be mounted horizontal with water flow from bottom to top. This ensures the flow cell is always filled completely and no air bubbles will be captured.

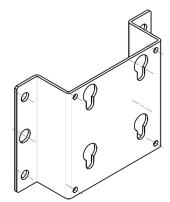
×	! For horizontal installation only ! (flow direction from bottom to up) ! Nur horizontal einbauen ! (Durchfluss von unten nach oben)
1	F-445



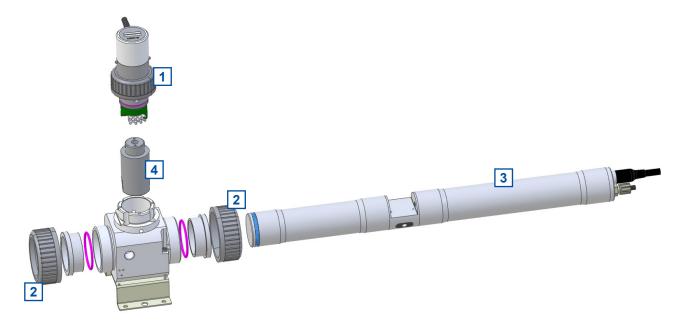
The installation of a spectrometer probe using the flow cell setup (part-no. F-445-V3) is performed by the following steps (see figures below also):

- Loosen both union nuts [1], which compress the O-rings of the flow cell. Do not unscrew completely the compression inserts [2] and O-rings [3] must stay in place.
- Insert the spectrometer probe so that the cable points to the marked side (red marking dot and label) and align, so that the optical path appears level and centred in the flow cell.
- Fasten both union nuts [1] while holding the spectrometer probe firmly in place.
- Check the correct assembly by peering into the glass window [4] on top of the flow cell.

After final mounting the plane face of the measuring section shall have a vertical orientation to avoid any sedimentation in the measuring section and ensure that air bubbles can escape upwards.


Dimension of flow cell (F-445-V3) and required space for 35 mm spectrometer probe in [mm]

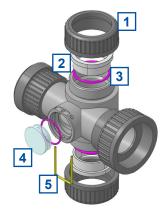
4.2.5 Mounting in Flow Cell for Clean Water with autobrush (F-446-V3)

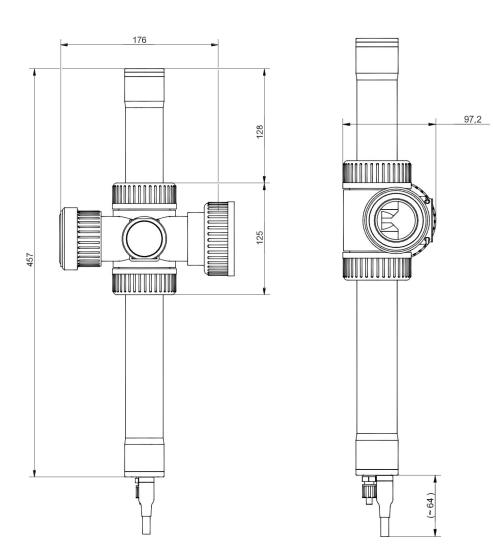

The flow cell can be mounted directly on a solid and flat surface (wall, mounting panel, etc.) using the mounting bracket (included in delivery). Once the mounting bracket is fixed the complete flow cell can easily be removed by unscrewing the safety screw (M4x45).

Please note, that the spectrometer probe can be mounted in one way only, because the measurement cell as well as the inside of the flow cell are not symmetrical. A red marking dot and a label on the flow cell indicate the position of the spectrometer probe in respect of the probe cable.

probe cable this side Sondenkabel diese Seite

The installation of a spectrometer probe using the flow cell setup autobrush (part-no. F-446-V3) is performed by the following steps (see figures below also):




- Unscrew the union nut for fastening of the brush unit [1] and lift it out of the unit carefully. The brush unit is sealed with an O-ring and will need some force to take it out of the flow cell.
- Loosen both union nuts [2], which compress the O-rings of the flow cell. Do not unscrew completely the compression inserts and O-rings must stay in place.
- Insert the spectrometer probe [3] so that the cable points to the marked side (red marking dot and label) and align, so that the optical path appears approximately level and centred in the brush opening. Observe that the optical path of the spectrometer probe is properly positioned in the brush unit.
- Insert the provided alignment tool [4] the cross hole lined with the spectrometer axis to find the exact position. Rotate and shift the spectrometer probe slightly, until the tool sits flush with the rim of the flow cell. The tool should not bend, while at the same time, the spectrometer cannot rotate.
- Fasten both union nuts while holding the alignment tool firmly in place.
- Remove the alignment tool. It is now assured, that the brush will rotate freely and will clean both windows
 properly.
- Insert the brush unit. Make sure that the alignment pin on the brush unit fits in one of the notches on the armature. This ensures, that the brush will not obstruct the optical path, when in rest position. The brush unit may be rotated 180° so that the cable exits at a convenient position.
- Note during insertion that approximately 4 mm short of the final position, you will notice a significant resistance from the O-ring seat.

4.2.6 Mounting in Flow Cell for Waste Water (F-48-V3)

The installation of a spectrometer probe using the flow cell setup waste water (partno. F-48-V3) is performed by the following steps (see figures below also):

- Loosen both union nuts [1], which compress the O-rings of the flow cell. Do not unscrew completely – the compression inserts [2] and O-rings [3] must stay in place.
- Insert the spectrometer probe so that the optical path appears level and centred in the flow cell.
- Fasten both union nuts [1] while holding the spectrometer probe firmly in place.
- Check the correct assembly by peering into the glass window [4].
- For cleaning purposes the glass window [4] can be opened by removing the metal bracket [5] with a flat screw driver.

Dimension of flow cell (F-48-V3) and required space for 5 mm spectrometer probe in [mm]

4.3 Automatic Probe Cleaning

The automatic cleaning of optical windows is needed to ensure a correct and stable measurement. For automatic probe cleaning either compressed air or cleaning devices with a rotating brush (autobrush in the flow cell or ruck::sack when istalled submersed) are needed. In special occasions, drinking water may be used to operate the hydraulic-pneumatic cleaning appliance instead or compressed air.

Sometimes it is possible that the air introducd by the automatic cleaning causes oxidation reactions to take place in the water. As a result, thin films of Fe / Mn / Ca can be formed. When the risk exists that such deposits are formed, it is recommended to use a very brief cleaning time only (1 - 2 seconds) and to reduce cleaning frequency (one cleaning cycle per hour) or to use drinking water instead of air for the automatic cleaning. The rotating brushes of the autobrush flow cell (F-446-V3) or the ruck::sack (F-146-RS) will avoid such coatings of oxidized Fe / Mn / Ca also.

The cleaning valve should never be connected to the compressed air coupling of your compressor directly, i.e. without a pressure hose in between. The total length of hoses should be as short as possible to avoid unnecessary pressure loss.

Any foreign matter in the compressed air supply may impair the hydraulic-pneumatic cleaning process. If you have any doubts about the purity of the air used (contamination by particles, oil, etc.), please install an appropriate filter upstream from the solenoid valve.

In areas with extremely low outside air temperature, s::can recommends laying the compressed air hoses such that they remain frost-free to prevent freezing of condensed water in the compressed air hose.

Please note that depending on the s::can probe and sensor type you are using, different maximum allowed pressures may be specified. In case a central pressurised air supply is used in such a case the lowest maximum allowed pressure amongst those specified for the individual instruments is to be used to supply all instruments or the use of pressure reducing valves to supply each instrument with the correct pressure is necessary.

In order to ensure proper operation of automatic cleaning s::can highly recommends to use s::can compressor optimized for compressed air supply of all probes and sensors.

For mounting of the cleaning devices please see the manuals and installation notes of the specific devices. The connection of the pressurized air cleaning and the mounting of the ruck::sack are explained in the following sections.

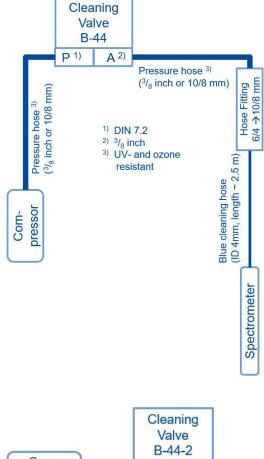
4.3.1 Connection of compressed Air Cleaning

The pressure connection set (B-41) supplied with the system contains components necessary to connect the spectrometer probe to the cleaning valve. The connection to the probe is performed by the following steps (see pictures on the right hand side also):

- Remove black dummy insert [1] from pressure connection on top of probe.
- To do this, unscrew the connecting nut [2] and removing the conical part [3].

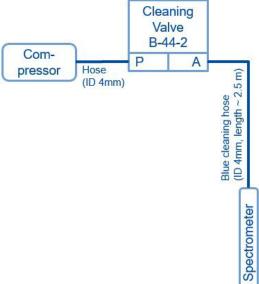
 Put the connecting nut
 [2] and the conical part [3] over the blue cleaning hose.

Push the cleaning hose over the pres-


- sure connection on top of the probe (warm up cleaning hose in hot water if necessary).
- Fasten connecting nut [2] by hand.

The connection to the cleaning valve depends on the used type of cleaning valve.

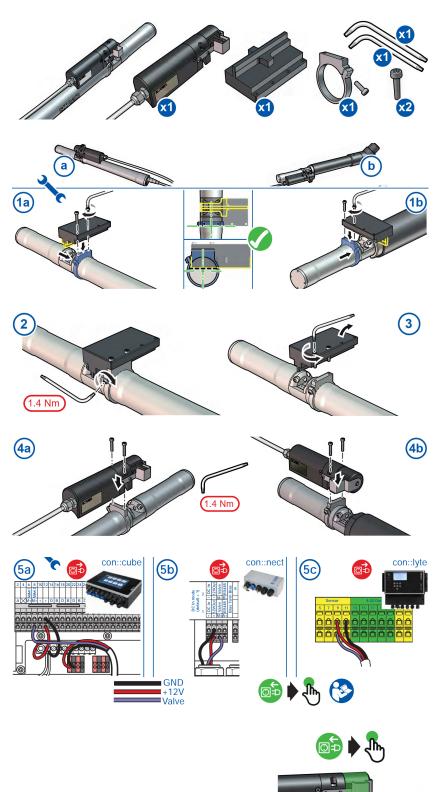
Cleaning valve B-44


A compressed air hose (to be provided by customer, ID 8 to 9 mm, UV- / ozone resistant) must be used to connect the adapter fitting of the pressure connection set to the output side of the cleaning valve (marked with \underline{A}). Fasten the air hose with hose clamps.

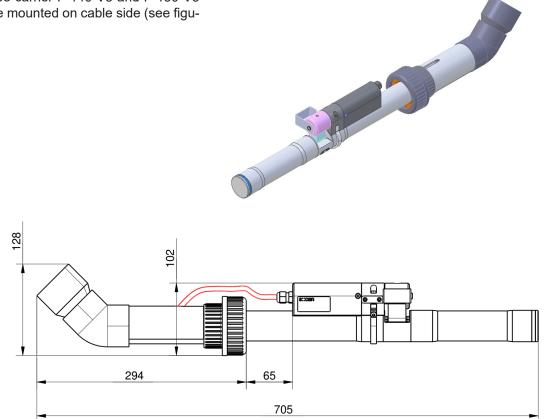
Another air hose and DIN 7.2 compressed air coupling are required to hook up the compressed air supply to the input side of the cleaning valve (marked with <u>P</u>).

Cleaning valve B-44-2

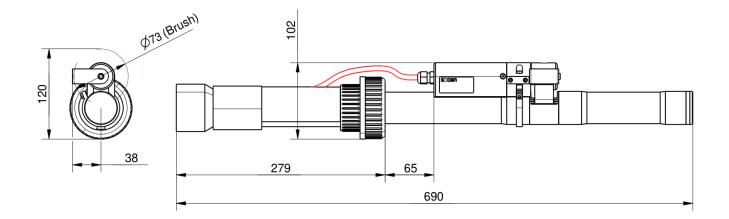
The adapter fitting of the pressure connection set can be removed to connect the blue tube directly to the push-pull fitting of the cleaning valve. The same type of tube can be used to connect the cleaning valve to the s::can compressor.


4.3.2 Mounting of ruck::sack (F-146-RS)

All needed tools for mounting of the ruck::sack are included in the scope of delivery (see figure on the right).


The ruck::sack will be mounted onto the probe housing either cable side (variant a) or, if a probe carrier (F-110-V3 or F-120-V3) is used, on the lower part of the probe housing (variant b).

The mounting is performed by the following steps (see figures on the right also):


- 1 Place the fixing ring over the probe housing. Place the alignment tool onto the optical path according the path length and fix it to the ring with the two screws included in delive-ry.
- 2 Position the alignment tool flat and then fasten the fixing ring onto the probe housing.
- 3 Unscrew the alignment tool from the fixing ring and remove it.
- 4 Screw the ruck::sack onto the fixing ring with the two screws included in delivery.
- 5 Connect the ruck::sack to the terminal used for operation (see manual of controller used for operation).
- 6 Check the correct position of the brush and the function of the ruck::sack.

When using the probe carrier F-140-V3 and F-150-V3 the ruck::sack can be mounted on cable side (see figure on the right).

Dimension of probe carrier (F-140-V3) and required space for 35 mm spectrometer with ruck::sack in [mm]

Dimension of probe carrier (F-150-V3) and required space for 35 mm spectrometer with ruck::sack in [mm]

5 Initial Startup

Once the mounting and installation of the s::can spectrometer probe have been completed and checked (see chapter 4) the initial startup of the s::can monitoring system will require the following actions, in the order presented below:

- Connect the spectrometer probe to the controller used for operation (see section 5.1 and 5.2).
- Connect the cleaning devices to the proper terminal connections in the cable terminal compartment of the used controller (please refer to the manual of the cleaning device and the controller).
- Establish main power supply to the controller (please refer to the manual of the controller) and wait until the operation software has started up. In case of using con::nect, lo::Tool has to be started manually.
- Perform initialisation of the spectrometer probe. Refer to section 5.3.1 in case of using a con::lyte D-320, refer to section 5.3.2 in case of using con::cube with moni::tool and refer to section 5.3.3 in case of using con::nect B-33-012 with Io::Tool.
- Perform parameterisation of the spectrometer probe. Refer to section 5.5.9 in case of using a con::lyte D-320, refer to section 5.5.10 in case of using con::cube with moni::tool and refer to section 5.5.11 in case of using con::nect B-33-012 with Io::Tool.
- Configure the measurement and automatic cleaning settings (please refer to the manual of the controller or section 5.4.2 in case of using Io::Tool. See section 12 regarding cleaning settings).
- Check the proper functioning of the cleaning system.
- Connection and parameterisation of data transfer when desired (please refer to the manual of the controller).
- Check the plausibility of the readings obtained after sufficient running-in time (at least 15 minutes).
- If necessary calibrate the readings of the spectrometer probe to the local water matrix when the readings are stable (see chapter 6).

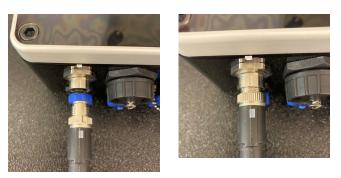
5.1 Controller for Operation

The s::can spectrometer probe is equipped with a web application for direct operation (Io::Tool). Therefore the probe can be operated directly via mobile device or can be connected to a s::can controller for operation. Depending on the used configuration, different features are available. The table below provides a general overview of possible configurations.

Controller	con::cube D-330	con::cube D-315	con::lyte D-320	con::nect B-33-012
Connection	via M-12 plug	via B-33-012	via C-32-V3 cable	via M-12 plug
Communication	ReST-API ¹⁾	ReST-API ¹⁾	Modbus RTU	ReST-API / Modbus RTU
Operating software	moni::tool V4	moni::tool V4	con::lyte V7.11	lo::Tool / SCADA
Parameter transfer	yes	yes	yes	yes
Fingerprint transfer	yes	yes	via lo::Tool	via lo::Tool
Trigger cleaning	via D-330	via D-315	via D-320	spectrometer / SCADA
Function Check	yes	yes	yes	lo::Tool
Local Calibration	yes	yes	yes	lo::Tool

¹⁾ Representional State Transfer Application Programming Interface

The spectrometer probe offers a specific operating mode (Legacy-Mode) for limited operation with con::lyte D-319 and con::cube D-315 without con::nect B-33-012. Please ask your s::can sales partner for further details.


5.2 **Connection to the Controller**

The s::can spectrometer will be delivered with a fixed cable including a plug that can be used to connect the probe to a compatible socket provided on the controller used for operation. Ensure that the probe plug and the connector are dry and clean. Otherwise communication errors and / or device damage might occur.

- Ensure that the orientation of the probe plug is aligned with the terminal socket (see white marking of cable and socket in the figure on the right).
- Push probe plug in carefully and fasten fixing screw at the same time.

Some of the s::can controller do not supply the specific M12 plug. When using a con::lyte D-320 a specific connection cable (part-no. C-32-V3) has to be used (see section 11.1.2).

For initialisation on a D-315 con::cube the con::nect B-33-012 must be used. Connect the spectrometer to the con::nect via M12 plug and use a network cable to connect the con::nect to the con::cube. In addition the IP settings of D-315 and spectrometer have to be configured to the same address range (please refer to manual con::nect B-33-012).

5.3 Probe Initialisation

For operating one or several probes / sensors with one operation controller, it is necessary to allocate an individual address to every probe / sensor. This will be done during probe initialisation process, at which the connected measuring device has to be recognized by the controller for operation first, and then a modification of the actual (preset) probe / sensor address might be performed. The corresponding address will be stored on the respective measuring device. For s::can probes and sensors of the same type, the same address is preset ex factory.

5.3.1 Probe Initialisation using con::lyte

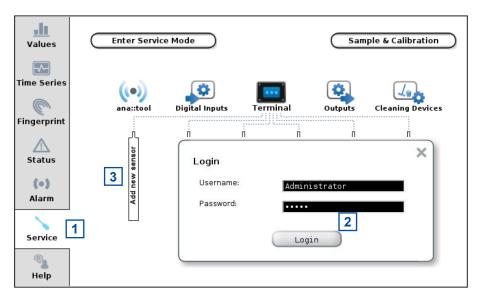
At the initial start-up the con::lyte D-320 provides an automatic probe and sensor initialisation procedure (see screen on the right). After connecting the spectrometer probe using the connection cable C-32-V3 to the MIL plug of the con::lyte, wait until the LED ring of the probe stops flashing. Then push the <u>OK</u> button to start the probe initialisation.

If sensor will be initialized at a later date, the following steps are needed:

- Switch to Status display by using the *Left* or *Right* button.
- Push *Function* button, select menu *Manage sensors...* and confirm with OK.
- Select menu Add sensor ... and confirm with OK.
- Connect sensor to the D-320.
- Wait until the LED-ring of the probe stops flashing.
- Select menu Add s:: can sensor ... and confirm with OK.

As soon as the entry is confirmed by pushing the <u>OK</u> button, the con::lyte will automatically search the Modbus port for a new sensor and will add the new sensor to the sensor list.

Add s::can sensor... Please connect all sensors and press OK to continue...


Add new Sensor Add 0/4-20mA... Add digital in... Add s::can sensor...

Add	s::can Sensor	
Sear	ching 17/20	
F:	spectro::lyserV3	
A:	<pre>spectro::lyserV3</pre>	

Add s::can Sensor.	
Done. Press OK	
Added sensors:	1
Replaced sensors:	0

5.3.2 Probe Initialisation using moni::tool

- 1 Click the <u>Service</u> tab on the moni::tool screen.
- 2 Login as <u>Administrator</u> with Password <u>admin1</u> or your individual username.
- 3 Click on an empty sensor icon (<u>Add new</u> <u>Sensor</u>) to initiate the initialisation process.
- 4 An automatic search procedure will start, searching for the connected sensor.
- 5 When the automatic search prodedure is finished, all connected probes and sensors will be displayed. Those sensors that are connected for the first time and not installed will have the Status *Found* <u>new sensor</u>. These sensors are listed as <u>New Sensors</u> below also.
- 6 If needed the suggested <u>Sensor name</u> can be modified. This name will be used in the system overview of the <u>Status</u> and <u>Service</u> display also.
- To install the new sensor click either on the blue <u>+</u> sign on the right side of the sensor or push the button <u>Install</u><u>All</u>.

Searchi	ng for connected Sensors	×
	hing for sensor at: rest_tcp://https/s	p3-0000026,
✤ pleas	e wait	
-	Stop Search Advanced S	Search
		10

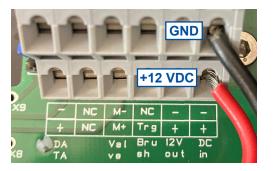
Found sensor devices	Status	Retr
rest_tcp://https/sp3-0000002	6 📀 Found new sensor.	
Install All 7	(Advanced Search) (Retry	Search
NEW SENSORS		
spectro::lyser		
Address:	rest_tcp://https/sp3-00000026	
Sensor name:	Spec 00000026 6 Previous names: spec 00000026 ise 18431421 cond 3528 oxi 3698 16290021 spec 14350458 spec 00000024	Ē
Status:		

10

- 8 moni::tool will install the sensor and switch to the <u>Service</u> display. The new sensor is displayed in the system overview.
- 9 Push the button <u>Leave</u> <u>Service Mode</u> located on the upper left side to start the measuring process.
- **10** When pushing the button <u>Advanced Search</u> the method how the sensor is connected (<u>Connection methode</u>), the used <u>COM-Port</u> and the <u>Address</u> can be defined exactly. This option shall be used by advanced users only.

Values	Enter Servi	ce Mode		Samp	le & Calibration	
Time Series	((a))		_			
C	ana::tool	Digital Inputs	Terminal	Outputs	Cleaning Devices	
Fingerprint	/set				, L B	
(•) Alarm	8 spec 0000026 - spectro::lyser	Add new sensor	Add new sensor Add new sensor	Add new sensor	Add new sensor	
Service	000002					
8	8 spec					
Help						
Advance	Advanced Search					
Connecti	on method:	via sensor cabl	e plug to termin	ial (s::can B	us) [•	
Instructio	ons:	Attach only new s range, start sear	ensor, detach al ch.	l other senso	ors, choose search	
COM-Port	S:	1 🛛 🛛 🖛 8	3 [▼			
Address	search range:	1 - 2	20			

Start search


5.3.3 Probe Initialisation using con::nect

In case the s::can spectrometer probe will be operated as stand alone measuring device without a s::can terminal, the probe initialisation and the start-up of Io::Tool is performed by the following steps:

- Connect the spectrometer probe to the compatible socket of the con::nect. Ensure that the sensor plug and the connector are dry and clean. Otherwise communication errors and / or device damage might occur.
- Wire the cleaning device for automatic cleaning of the spectrometer probe to the con::nect directly. The table below displays the different possibilities for connection.

Cleaning Device	Color of wire	Labelling
Cleaning valve	Blue	M+ Valve
	Brown	M- Valve
autobrush	Purple (yellow ¹⁾)	Trg Brush
	Black (brown 1))	- 12V out
	Red (white ¹⁾)	+ 12V out
ruck::sack	Purple	Trg Brush
	Black	- 12V out
	Red	+ 12V out

¹⁾ previous used cable version

Once the cleaning device has been electrically connected, the device needs to be parameterised within the operating software (please refer to section 5.4.3 or the according manual of the used terminal for operation).

- Connect the con::nect to the main power supply (+12 VDC to lower terminal (+ DC in) and ground to upper terminal (- DC in) as displayed in figure above).
- Several seconds after the con::nect box was connected to power supply, the LED ring of the probe will flash blue.
- Within one minute the LED ring will change from flashing to continuous color. The spectro::lyser is online now and measurements will start automatically according to user settings.
- Connect your mobile device to the WLAN of the spectrometer probe. The network name belonging to spectrometer probe start with <u>sp3-xxxxxxx</u> (xxxxxxxx corresponds to the serial number of the probe). The WLAN password = <u>spectrolyser</u>.
- Alternatively connect your notebook with a LAN cable to the con::nect. Please consider administrator rights might be needed to establish connection.
- Enter the IP address of the spectro::lyser into your webbrowser to start lo::Tool. The table below displays the different possibilities to get the correct IP address.
- If you do not know the correct IP address, enter https://iotool.lan or http://iotool.lan.

When using a wireless connection, we recommend to use WLAN because it offers a higher data rate than a Bluetooth connection.

Connection methode	IP address of spectrometer	Remark
via WLAN	192.168.43.1	default address; password = <u>spectrolyser</u>
via Bluetooth	192.168.44.1	default address
via LAN	to be checked on DHCP Server	DHCP active on spectrometer probe per default
via LAN	192.168.42.10	fall back (static) if network without DHCP Server (e.g. when connecting directly with notebook). Ple- ase see manual of con::nect for further details how to set static IP on your notebook.
con::cube ReST-API	192.168.30.xxx	

5.4 lo::Tool

The operating software lo::Tool is installed on the spectromter probe. Enter the IP address of the spectrometer (e.g. 192.168.42.10) or https://iotool.lan (http://iotool.lan) in the webbrowser of a connected device (e.g. notebook, mobile phone, tablet, etc.) to start lo::Tool.

The moni::tool software also provides the possibility to start Io::Tool directly on the con::cube display (<u>Service</u> > <u>Terminal > Extras > io::tool</u>).

Push the button <u>Start io::tool</u> on top of the screen and confirm the user message with button <u>Yes</u>.

Click on the displayed Link (<u>http://sp3-xxxxxxx.concu-be3.lan</u>) to start Io::Tool on the con::cube screen.

To exit Io::Tool on the con::cube, simply reboot the device.

	Service > Terminal > Extras > Io::tool
	Start io::tool
io::tool	
To start io: to moni::to	io::tool X order to switch back
	You are about to switch to io::tool. moni::tool will be closed. To switch back to moni::tool, you will have to reboot the system.
	Do you want to continue?
	No Yes
Ĺ	

As soon as the connection is established, Io::Tool will pop up in the webbrowser showing the actual readings of the spectrometer probe (see figure below).

Io::Tool will use the same language like the webbrowser. That means the language of Io::Tool can be changed by changing the default language of the webbrowser.

	1	
2		

Main tabs to change the displayed information.

2 Name of user logged in currently. For operation of lo::Tool there are three users available. Per default the user is logged in as *guest* automatically (no password required). For the normal operator the level *user* (with password *scan*) and for service personal the user *expert* (with password *scan*) is available.

Actual parameter readings and unit.

- 4 Actual system date and time.
- 5 Current state (e.g. *Idle*, *Measuring*, *Offline*). In case the probe is operated with an s::can terminal (e.g. con::lyte) the displayed activity is *con::lyte Operation*.

When connected to Io::Tool for the first time, the login as user *guest* is automatic. A change of the user is performed by the following steps:

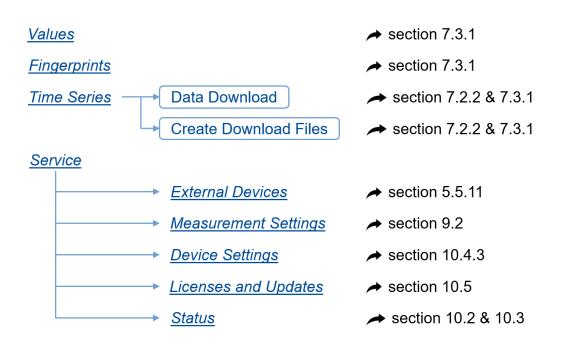
- Click on the user icon in the upper right corner of lo::Tool.
- Click on button <u>Perform Logout</u> to logout the current user.
- Enter the new <u>Username</u> (e.g. guest, user or expert).
- Enter the <u>Password</u> (scan for user or expert, no password for guest).
- Click on button <u>Perform Login</u> to login as new user.

Even when the spectrometer probe is operated by a s::can terminal (con::cube, con::lyte) it is possible to start lo::Tool. In this case you can see within the device status that the probe is operated by an external terminal. Therefore some configurations (e.g. measurement settings, function check, spectral references) can be executed via the s::can terminal only.

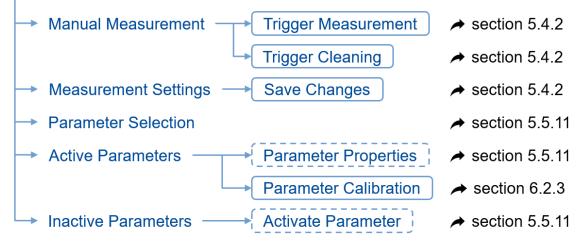
Push the button <u>*Remove Binding*</u> to operate the spectrometer probe as stand alone device.

s::can Va	lues Fi	ngerprints	Time Series	Service 🔻
User Ad	dmir	nistrat	tion	
0				
Current User:		gu	est	
Perform Log	out	Change P	assword	
s::can Va	lues Fi	ngerprints	Time Series	Service 🔻
Login				
Username:			user	
Password:			••••	
Perform Logi	n			

s::can	Values	Fingerprints	Time Series	Service -	expert	
Terminal (Operat	ion				
This device is	This device is currently controlled by the following terminal: con::lyte					
To remove terminal control, please use the terminal device and uninstall this sensor there. If this is not possible, you may use the button below to force terminal removal.						
Remove Binding						

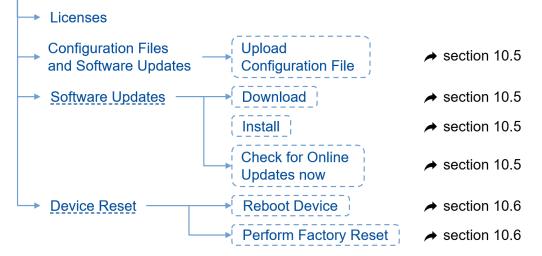

9/2021 9:51 AM, con::lyte Operation

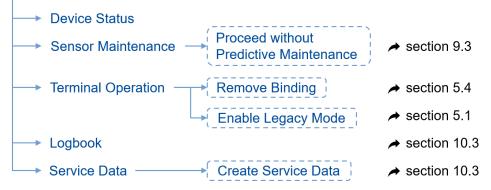
5.4.1 General Overview of Io::Tool


This section provides a general overview of the Io::Tool menu and the available functions. Beside the function name there is a reference to the section where a detailed description can be found. Depending on the user level some functions might be hidden (see legend below).

Legend:

Button visible for User and Expert Button visible for Expert only Entry visible for User and Expert Entry visible for Expert only


Measurement Settings


Spectral References

Spectral References Edit Spectral Reference section 9.2 Create new section 9.2 Spectral Reference Function Check **Start Function Check** section 8.3 **Device Settings** section 10.4 Network Settings section 10.4.3 Modem Settings section 7.2.3 File Transfers section 7.2.3 Modbus / IO Settings section 10.4.3 Time Settings -Edit Settings section 10.4.3 Save Changes

Licenses and Updates

<u>Status</u>

5.4.2 Measurement Settings and Sleep Mode using Io::Tool

Subject to proper power supply, the spectrometer probe can be operated in stand alone mode, without any controller connected.

A change of the measurement settings and the automatic cleaning settings of the spectrometer probe is performed by the following steps:

- 1 Start lo::Tool and logon as <u>user</u> or <u>expert</u>.
- 2 Select menu <u>Service \ Measurement Settings</u>.
- **3** Push the button <u>Enter Service Mode</u>.
- 4 Push the button <u>*Trigger Measurement*</u> to execute a single measurement.
- **5** Push the button <u>*Trigger Cleaning*</u> to execute a single cleaning process according to the actual settings.
- 6 Configure the settings for measurement as explained below:

S::can Values F	ingerprints	Time Series	Service -	expert	
Manual Measu	rement		2	1	
Here you can manually tr automatic measurement	00		0,	cle. Potential	
Trigger Measurement	Trigger	Cleaning			
4 Measurement S	Setting	5			
Automatic Measuremen	t Mode: 🛛				
Measurement Interval:	Measurement Interval: 120 s				
Cleaning Interval:	Cleaning Interval: 600 s				
Cleaning Duration:	6 2	S			
Cleaning Wait Time:	15	ō s			
Medium Detection:					
Service Mode Timeout:	18	300 s			
Please enter Service Mod	le to modify	above setting	s.		
Enter Service Mode					

- Automatic Measurement mode: Tick this checkbox to activate automatic measurements.
 - <u>Measurement Interval</u>: Can be set between 15 and 86400 sec. (1 measurement per day). In case the measurement process needs more time, the spectrometer will skip single measurements.
- <u>Cleaning Interval</u>: Can be set between 0 and 86400 seconds. The cleaning interval cannot be configured smaller than the actual measurement interval.
- <u>Cleaning Duration</u>: Time the automatic cleaning is active. Can be set between 0 and 60 seconds. A value of 0 s will deactivate the automatic cleaning.
- <u>Cleaning Wait Time</u>: Time between the end of automatic cleaning and the start of measurement. This time can be set between 5 and 600 seconds.
- <u>Medium Detection</u>: Tick this checkbox, if the spectrometer shall check the plausibility of the measured fingerprint. In case the probe is measuring on air, the parameter status will switch to warning (<u>No medium detected</u>) and the LED becomes red.
- Service Mode Timeout: This is the time when the Service Mode will stop automatically, in case no further action is per-

formed. This time can be set between 600 and 86400

sec.

- 7 As soon as any setting has been changed the text <u>Data modified</u> is visible on the display. Push the button <u>Save Changes</u> to store the new settings permanently.
- 8 Push the button <u>Leave Service Mode</u> to stop the Service Mode and to start the normal measuring process again.

Save Changes	
Data modified.	
8	Leave Service Mode (1668)

Within the <u>Service / Device Settings</u> menu the <u>Automatic Sleep</u> mode can be activated (see section 10.4). When this mode is activated, the spectrometer probe goes into the sleep (low power consumption) mode after the measurement process is finished and all connections are closed (e.g. Io::Tool, Modbus). During sleep mode the LED flashes blue every 2 seconds.

The sleep mode will be interrupted with the start of the next measurement. A manual interruption between the measurements is possible by activating the reed switch as explained below and shown in the figure on the right.

Place a magnet (e.g. from magnetic flip chart) below the LED ring in that way it is located below the serial number written on the type label. After a few seconds the LED ring stops flashing and is permanently on, which means the sleep mode is interrupted and you can connect to the spectrometer probe via lo::Tool. Now magnet can be removed.

For low power operation please use sleep mode and do not power the spectrometer probe on / off permanent. This might cause hardware damage on the measuring device (especially with measuring interval < 1 hour). If extreme low power consumption is requested, please ask your s::can Sales Partner for deep sleep mode.

5.5 Probe Parameterisation

Number and type of the measured parameters can be configured individually on the spectrometer probe. For each parameter one Global Calibration will be uploaded to the probe. Therefore later upgrade is possible.

The G-Series (e.g. nitro::lyser) will be delivered with a fix set of parameter.

In the following sections all available parameters and the possible measuring ranges for the different types of applications are shown. These measuring ranges are the same for spectro::lyser and G-Series.

5.5.1 Parameter Measuring Ranges in Clean Water

Below the s::can part no. of the specific parameter (e.g. GC-G-TURB, which is Turbidity for ground water) the measurable concentration ranges, which may vary due to water matrix, are displayed for all three optical path lengths (1 mm, 5 mm and 35 mm).

Parameter	Ground water	Surface water	Drinking water
Turbidity [FTU/NTU]	GC-G-TURB	GC-R-TURB	GC-D-TURB
OPL = 1 mm ¹⁾	0 - 8000	0 - 9300	0 - 8000
OPL = 5 mm	0 - 1200	0 - 1400	0 - 1200
OPL = 35 mm	0 - 170	0 - 200	0 - 170
TSS [mg/l]	not available	GC-R-TSS	not available
OPL = 1 mm ¹⁾		0 - 8000	
OPL = 5 mm		0 - 1200	
OPL = 35 mm		0 - 170	
COLORapp / COLORtru [Hazen]	GC-G-COL	GC-R-COL	GC-D-COL
OPL = 1 mm ¹⁾	0 - 23000 / 14000	0 - 23000 / 14000	0 - 23000 / 14000
OPL = 5 mm	0 - 3500 / 2100	0 - 3500 / 2100	0 - 3500 / 2100
OPL = 35 mm	0 - 500 / 300	0 - 500 / 300	0 - 500 / 300

Parameter	Ground water	Surface water	Drinking water
TOC / DOC [mg/l] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	GC-G-TOC 0 - 930 / 700 0 - 140 / 100 0 - 20 / 15	GC-R-TOC 0 - 1400 / 1200 0 - 210 / 180 0 - 30 / 25	GC-D-TOC 0 - 1000 / 800 0 - 160 / 120 0 - 22 / 17
BOD [mg/l] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	not available	GC-R-BOD 0 - 2000 0 - 300 0 - 42	not available
COD / CODf [mg/l] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	not available	GC-R-COD 0 - 3300 / 2000 0 - 500 / 300 0 - 71 / 42	not available
NO ₃ -N / NO ₃ [mg/l] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	GC-G-NO3-N 0 - 930 / 4100 0 - 140 / 620 0 - 20 / 88	GC-R-NO3-N 0 - 700 / 3100 0 - 100 / 460 0 - 15 / 66	GC-D-NO3-N 0 - 930 / 4100 0 - 140 / 620 0 - 20 / 88
Chl-a [µg/l] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	not available	GC-R-CHL-A 0 - 4600 0 - 700 0 - 100	not available
HS ⁻ [mg/l] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	GC-G-HS 0 - 240 0 - 35 0 - 5	GC-R-HS 0 - 240 0 - 35 0 - 5	not available
BTX [mg/l] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	GC-G-BTX 0 - 2400 0 - 360 0 - 51	GC-R-BTX 0 - 2400 0 - 360 0 - 51	not available
Chloramine [mg/l] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	not available	not available	GC-D-CHLORAMINE 0 - 2000 0 - 300 0 - 42
Ozone O ₃ [mg/l] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	not available	not available	GC-D-O3 0 - 1200 0 - 180 0 - 25
Chlorine demand CLD [mg/l] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	not available	not available	GC-D-CLD 0 - 1000 0 - 160 0 - 22
UV254t / UV254f [Abs/m] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	GC-G-UV254 0 - 3300 / 2800 0 - 500 / 420 0 - 71 / 60	GC-R-UV254 0 - 3300 / 2800 0 - 500 / 420 0 - 71 / 60	GC-D-UV254 0 - 3300 / 2800 0 - 500 / 420 0 - 71 / 60

¹⁾ real OPL is approx. 0.75 mm

5.5.2 Parameter Measuring Ranges in Municipal Waste Water

Parameter	Influent & sewer	Aeration	Effluent
TSS [mg/l]	GC-I-TSS	not available	GC-E-TSS
OPL = 1 mm ¹⁾	0 - 8000		0 - 4000
OPL = 5 mm	0 - 1200		0 - 600
OPL = 35 mm	0 - 170		0 - 85
TS [g/l] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	not available	GC-A-TS 0 - 20 0 - 3 0 - 0.42	not available
Turbidity [FTU/NTU] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	not available	not available	GC-E-TURB 0 - 8000 0 - 1200 0 - 170
COLORapp / COLORtru [Hazen]	GC-I-COL	not available	GC-E-COL
OPL = 1 mm ¹⁾	0 - 23000 / 14000		0 - 23000 / 14000
OPL = 5 mm	0 - 3500 / 2100		0 - 3500 / 2100
OPL = 35 mm	0 - 500 / 300		0 - 500 / 300
TOC / DOC [mg/l]	GC-I-TOC	not available	GC-E-TOC
OPL = 1 mm ¹⁾	0 - 3300 / 2600		0 - 2600 / 2000
OPL = 5 mm	0 - 500 / 400		0 - 400 / 300
OPL = 35 mm	0 - 71 / 57		0 - 57 / 42
BOD [mg/l]	GC-I-BOD	not available	GC-E-BOD
OPL = 1 mm ¹⁾	0 - 5300		0 - 2000
OPL = 5 mm	0 - 800		0 - 300
OPL = 35 mm	0 - 110		0 - 42
COD / CODf [mg/l]	GC-I-COD	GC-A-COD	GC-E-COD
OPL = 1 mm ¹⁾	0 - 10000 / 5300	0 - 530 (CODf only)	0 - 3300 / 2000
OPL = 5 mm	0 - 1500 / 800	0 - 80 (CODf only)	0 - 500 / 300
OPL = 35 mm	0 - 210 / 110	0 - 11 (CODf only)	0 - 71 / 42
NO ₃ -N / NO ₃ [mg/l]	GC-I-NO3-N	GC-A-NO3-N	GC-E-NO3-N
OPL = 1 mm ¹⁾	0 - 100 / 460	0 - 26 / 110	0 - 300 / 1300
OPL = 5 mm	0 - 16 / 70	0 - 4 / 17	0 - 45 / 190
OPL = 35 mm	0 - 2.2 / 10	0 - 0.6 / 2.5	0 - 6.4 / 28
HS ⁻ [mg/l] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	GC-I-HS 0 - 80 0 - 12 0 - 1.7	not available	not available
Ozone O ₃ [mg/l] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	not available	not available	GC-E-O3 0 - 1200 0 - 180 0 - 25
UV254t / UV254f [Abs/m]	GC-I-UV254	GC-A-UV254	GC-E-UV254
OPL = 1 mm ¹⁾	0 - 3300 / 2800	0 - 3300 / 2800	0 - 3300 / 2800
OPL = 5 mm	0 - 500 / 420	0 - 500 / 420	0 - 500 / 420
OPL = 35 mm	0 - 71 / 60	0 - 71 / 60	0 - 71 / 60

¹⁾ real OPL is approx. 0.75 mm

5.5.3 Parameter Measuring Ranges in Industrial Waste Water

Parameter	Brewery	Paper mill influent	Paper mill Effluent	Dairy
TSS [mg/l]	GC-B-TSS	GC-P-TSS	GC-Q-TSS	GC-M-TSS
OPL = 1 mm ¹⁾	0 - 13000	0 - 8000	0 - 4000	0 - 8000
OPL = 5 mm	0 - 2000	0 - 1200	0 - 600	0 - 1200
OPL = 35 mm	0 - 280	0 - 170	0 - 85	0 - 170
$\frac{\text{COD / CODf [mg/l]}}{\text{OPL} = 1 \text{ mm}^{1)}}$ $\frac{\text{OPL} = 5 \text{ mm}}{\text{OPL} = 5 \text{ mm}}$	GC-B-COD	GC-P-COD	GC-Q-COD	GC-M-COD
	0 - 60000 / 53000	0 - 13000 / 11000	0 - 5300 / 3300	0 - 33000 / 16000
	0 - 9000 / 7900	0 - 2000 / 1700	0 - 790 / 490	0 - 5000 / 2400
OPL = 35 mm	0 - 1200 / 1100	0 - 280 / 240	0 - 110 / 70	0 - 710 / 340
$NO_3 - N / NO_3 [mg/l]$	GC-B-NO3-N	GC-P-NO3-N	GC-Q-NO3-N	GC-M-NO3-N
OPL = 1 mm ¹⁾	0 - 100 / 470	0 - 100 / 470	0 - 100 / 470	0 - 210 / 940
OPL = 5 mm OPL = 35 mm	0 - 16 / 70 0 - 2.2 / 10	0 - 16 / 70 0 - 2.2 / 10	0 - 16 / 70 0 - 2.2 / 10	0 - 210 / 940 0 - 140 / 32 0 - 4.5 / 20
UV254t / UV254f [Abs/m] OPL = 1 mm ¹⁾ OPL = 5 mm OPL = 35 mm	GC-B-UV254 0 - 3300 / 2800 0 - 500 / 420 0 - 71 / 60	GC-P-UV254 0 - 3300 / 2800 0 - 500 / 420 0 - 71 / 60	GC-Q-UV254 0 - 3300 / 2800 0 - 500 / 420 0 - 71 / 60	GC-Q-UV254 0 - 3300 / 2800 0 - 500 / 420 0 - 71 / 60

¹⁾ real OPL is approx. 0.75 mm

5.5.4 Available Parameters for nitro::lyser

Part-no. / Application	FTU	NTU	TSS	TS	NO ₃ -N	NO ₃
N2-D / Drinking water	[X]	Х			Х	[X]
N2-G / Ground water	[X]	Х			Х	[X]
N2-R / Surface - / River water	[X]	Х			Х	[X]
N2-E / Effluent			[X]		[X]	Х
N2-A / Aeration				[X]	[X]	Х
N2-I / Influent & sewer			[X]		[X]	Х

X Parameter available and can be activated instead of another

[X] Parameter available and activated per default

5.5.5 Available Parameters for ozo::lyser

Part-no. / Application	FTU	NTU	TSS	OZONE
O2-D / Drinking water	[X]	Х		[X]
O2-E / Effluent			[X]	[X]

X Parameter available and can be activated instead of another

[X] Parameter available and activated per default

5.5.6 Available Parameters for carbo::lyser

Part-no. / Application	FTU	NTU	TSS	TS	NO ₃ -N	NO ₃	COD	CODf	BOD	TOC	DOC	UV254t	UV254f
C2-D / Drinking water	[X]	Х								[X]	Х	Х	Х
C3-D / Drinking water	[X]	Х								[X]	[X]	Х	Х
C2-R / Surface - / River water	[X]	Х	Х				Х	Х	Х	[X]	Х	х	Х
C3-R / Surface - / River water	[X]	Х	Х				Х	Х	[X]	[X]	Х	Х	Х
C2-E / Effluent			[X]				[X]	Х	Х	Х	Х	Х	Х
C3-E / Effluent			[X]				[X]	Х	[X]	Х	Х	Х	Х
C2-A / Aeration				[X]				[X]					
C2-I / Influent			[X]				[X]	Х	Х	Х	Х	Х	Х
C3-I / Influent			[X]				[X]	Х	[X]	Х	Х	Х	Х

X Parameter available and can be activated instead of another

[X] Parameter available and activated per default

5.5.7 Available Parameters for multi::lyser

Part-no. / Application	FTU	NTU	TSS	TS	NO ₃ -N	NOs	COD	codf	BOD	TOC	DOC	UV254t	UV254f
M4-D / Drinking water	[X]	Х			Х	[X]				[X]	[X]	Х	Х
M4-R / Surface - / River water	[X]	Х	Х		Х	[X]	Х	Х	[X]	[X]	Х	Х	Х
M4-E / Effluent			[X]		[X]	Х	[X]	Х	[X]	Х	Х	Х	Х
M4-A / Aeration				[X]	[X]	Х		[X]					
M4-I / Influent			[X]		[X]	Х	[X]	Х	[X]	Х	Х	Х	Х

X Parameter available and can be activated instead of another

[X] Parameter available and activated per default

5.5.8 Available Parameters for uv::lyser

Besides Turbidity, TSS or TS the uv::lyser provides the absorbance value (UV) of up to 4 individual wavelengths.

Part-no. / Application	FTU	NTU	TSS	TS	UV254t	UV254f
U5-D / Drinking water	[X]	Х			Х	Х
U5-R / Surface - / River water	[X]	Х			Х	Х
U5-E / Effluent			[X]		Х	Х
U5-A / Aeration				[X]	Х	Х
U5-I / Influent			[X]		Х	Х

X Parameter available and can be activated instead of another

[X] Parameter available and activated per default

5.5.9 Probe Parameterisation using con::lyte

After successful probe initialisation (see section 5.3.1) the needed measuring parameters of the spectrometer probe have to be added to the parameter display. This is performed by the following steps:

- Switch to status display with <u>Left-</u> or <u>Right</u> button.
- Push <u>Function</u> button, select menu <u>Manage sensors...</u> and confirm with <u>OK</u>.
- Select <u>spectro::lyserV3/0/x</u> and confirm with <u>OK</u>.
- Select menu <u>Add parameters...</u> and confirm with <u>OK</u>.
- Select needed parameter and confirm with <u>OK</u>.

The selected parameter will be displayed now on the next free position of the parameter display. The default display configuration is used. Changing the display format is performed by the following steps:

- Select the parameter in the parameter display using <u>*Up-*</u> or <u>*Down*</u> button.
- Push <u>Function</u> button, select menu <u>Display settings...</u> and confirm with <u>OK</u>.

In the displayed parameter configuration the following settings can be modified.

- <u>Name</u> Displays the actual name of the parameter.
- Displays the actual unit of the parameter.

A change of the name or unit of the parameter is performed by the following steps:

- Select the entry with <u>*Up-*</u> and <u>*Down*</u> buttons and confirm by pushing the <u>*OK*</u> button.
- Change the name with <u>Up-, Down-, Left-</u> and <u>Right</u> buttons.
- Push the <u>OK</u> button to confirm the new name.

Please note that change of parameter name or unit will not change the parameter configuration itself (e.g. if you change the parameter name NO_3 -N to NO_3 the reading will still be NO_3 -N).

- <u>Disp.Format</u>
 Within this line the number of displayed decimal places (between 0 and 5) can be set. Please note that in case of too many digits high values can not be displayed and the parameter reading will switch to plus signs (<u>++,+++++</u>).
- *Load Defaults* Confirming this entry by pushing the <u>Ok</u> button will restore the default display settings from the sensor.

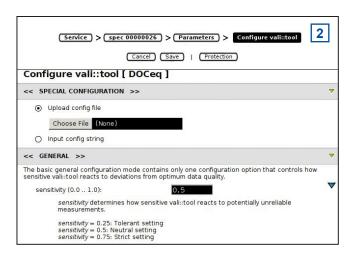
All modifications performed by the operator within these settings menu will be documented in the config file of the con::lyte (see manual con::lyte D-320).

If further licenses for parameters will be installed on the spectrometer probe after the initial start-up or inactive parameters shall be changed to active parameters (e.g. on G-Series), this can be done via lo::Tool only. After the additional parameters have been activated on the spectrometer probe, a new probe initialisation on the con::lyte might be needed.

P1/DOCeq	
Name:	DOCeq
Unit:	mg/l
Disp.Format:	2
Load Defaults	

Add para. Add DOCeq Add NO3eq

5.5.10 Probe Parameterisation using moni::tool

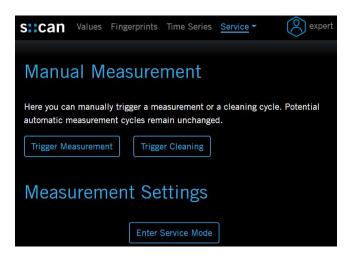

After successful probe initialisation (see section 5.3.2) all parameters of the spectrometer probe will be installed and the active parameters will be displayed on the <u>Values</u> screen of moni::tool. If you want to configure the measuring parameters individually, this can be done using the menu item <u>Service / Terminal / Parameters</u>.

After selecting this menu item a list of all installed parameters is displayed. After selecting one or several parameters by clicking on them, the following activities can be performed:

- Moving the selected parameter to a higher position in the <u>Values</u> display by pushing the entry <u>Up</u>.
- Moving the selected parameter to a lower position in the <u>Values</u> display by pushing the entry <u>Down</u>.
- Deleting the selected parameter from <u>Values</u> display by pushing the entry <u>Remove Parameter</u>. This action has to be confirmed in a new screen by pushing the button <u>Delete all</u>.
- A new parameter can be added to the <u>Value</u> display by pushing the entry <u>Add Parameter</u>. A table of all parameters that are available will be displayed.
- Click on the blue plus sign (<u>+</u>) on the right hand side of the parameter you want to add to the <u>Values</u> display.
- Click on the blue wheel (<u>Edit</u>) on the right hand side of the parameter will display the actual parameter settings [1].
- Depending on the used <u>Service Level</u> different settings are displayed and can be edited. <u>Parametername</u>, <u>Unit</u> and <u>Resolution</u> can be modified in the <u>Basic</u> level. On a higher <u>Service Level</u> (<u>Advanced</u>, <u>Expert</u>) the <u>Additional Parameters</u> can be configured.
- Click on the blue check mark (<u>Config</u>) on the right hand side of the parameter to check or modify the settings for vali::tool of this parameter [2]. The <u>Basic</u> screen is displayed on the right. Please refer to the manual moni::tool for further information.
- Click on the next blue sign (<u>Alarm</u>) on the right hand side of the parameter to check or modify the alarm settings for this parameter [3]. The basic screen is displayed on the right. Please refer to the manual moni::tool for further information.

	(Service) > (Termir	1al) > Parar	neters		
	Up Down 🕻 Add Par	ameter Rem	ove Paramete	r	
Parameter name	Sensor	Unit	Edit	Config	Alarm
DOCeq	spec 00000026	mg/l	0	~	0
	1	1	<u> </u>	2	3

(Service) >		> (Parameters) > Edit	DOCeq 1]
Edit Parameter [DOC	eq]			
<< GENERAL SETTINGS >>				•
Address: Sensor name: Parameter name (Internal):	rest_tcp:/ spec 000 D0Ceq	/https/sp3-00000026/63 00026		\$
Parameter name:	DOCeq			è
Unit (Internal):	mg/l			è
Unit:	mg/l			۲
Resolution:	1			
Upper limit:	180.0	[mg/l]		è
Lower limit:	0.0	[mg/l]		è
<< ADDITIONAL PARAMETERS	>>			•
Clip to Min:	true		[•	
Clip to Max:	false		[▼]	♦
Ignore Error:	false		[▼]	
<< HISTORY INFORMATION >	·>			•
Shows information about the last	modification.			
Installed on:	18-02-203		1	
Installed by:	Administr			-
Reason:	Automati	installation	3	



Service > Spec 00000026 > Parameters > Configure Alarm Cancel Save Protection	
Configure Alarm [DOCeq]	
<< SPECIAL CONFIGURATION >>	•
Upload config file	
Choose File (None)	
O Input config string	
<< ALARM >>	•
The basic alarm configuration mode contains configuration options that allow to define an upper and a lower limit for a set point alarm.	
alarmLimitUpper (-Infinity Infinity): Infinity	
alarmLimitLower (-Infinity Infinity):	
alarmLimitLower allows defining a lower threshold for a set point alarm.	

5.5.11 Probe Parameterisation using lo::Tool

After successful probe initialisation (see section 5.3.3) all active parameters of the spectrometer probe will be displayed on the <u>Values</u> screen of Io::Tool. If you want to configure the measuring parameters individually, this can be done using the menu item <u>Measurement Settings</u>.

- Logon as user *user* or *expert* (see section 5.4).
- Select menu <u>Service \ Measurement Settings</u>.
- Activate the <u>Service Mode</u> by pushing the button.
- Below the <u>Parameter Selection</u> all active fingerprints and parameters are displayed. Push the blue icon on the left side of the <u>Parameter Name</u> to open the configuration window of the <u>Parameter Properties</u> for this parameter.
- <u>Name</u> displays the used parameter name. This can be changed if needed.
- <u>Description</u> is the exact description of the parameter.
- <u>Id</u> and <u>Application</u> are the identification of the calculation algorithm (Global Calibration).
- <u>Unit</u> displays the used parameter unit. This can be changed if necessary.
- <u>Decimals</u> is the number of displayed decimal places of the parameter. This can be changed if necessary.
- <u>Averaging</u> displays the number of used readings to calculate the average. The number 1 (factory setting) deactivates the averaging.
- <u>Limits</u> displays the defined measuring range for the used optical path length.
- <u>Error Limits</u> displays the range outside of that an error message for this parameter will be displayed.
- The following check boxes define if the reading display will be limited to the measuring range (*Value clipping*) and if the exceed of the measuring range will cause an error (*Ignore Error*).
- Pushing the button <u>Remove Parameter</u> will not display readings of this parameter anymore and move the parameter to the inactive parameters.
- Any changes made must be confirmed by pushing the button <u>Save</u>.
- By pushing the blue <u>+</u> sign on the left hand side of the <u>Parameter Name</u>, an <u>inactive Parameter</u> will be added to the <u>Values</u> screen again.

Parameter Selection

Only active parameters are measured. Click on a parameter name to show its settings. Click on the calibration type to modify calibrations and their samples.

Active Parameters

Parameter Name	Calibration
6 Fingerprint	
Markov Turbidity	global
👩 TOCeq	Ø offset

Parameter Prop	perties		×
Name:	TOCeq]	
Description:	Total organic carbon		
ld:	RIV_VIS_TOCEQ_MG-L_SCAN	000_1	
Application:	River		
Unit:	mg/l		
Decimals:	1		
Averaging:	1		
Limits:	0 mg/l - 30 mg/l		
Error Limits:	-0.9 mg/l - 30 mg/l		
Value clipping:	Minimum 🗹 / Maximum 🔲		
Ignore Error:			
Active Parameter	Remove Parameter		
	Data modified.	Cancel	Save

Inactive Parameters

General			
Parameter Name		Range 32 °F - 113 °F	
Drinking Water			
Parameter Name	Drinking Wat	er, Ground Water, River er	Range 0 mg/l - 51 mg/l 0 mg/l - 42 mg/l

6 Calibration

At each measurement the s::can spectrometer probe detects the absorbance at different wavelengths caused by the measured medium. This so called fingerprint is used to calculate different parameters (e.g. NO₃-N, COD) based on the global calibration the spectrometer probe is equipped with. Global calibrations are standard spectral algorithms available for specific conditions of typical applications (e.g. municipal waste water, river water, drinking water) in such a way, that the spectrometer probe can be used immediately after delivery.

With a local calibration the respective parameters can be adapted to the actual concentrations of the local water matrix, if necessary. A local calibration can be performed directly on site without demounting the spectrometer probe or using standard solutions.

Once the spectrometer probe is calibrated locally to the specific medium, there is no need to recalibrate the spectrometer probe any more. Only the measuring windows have to be kept clean.

Data base for each local calibration are results of conventional laboratory analysis on the one hand and the absorbance spectra measured with the spectrometer probe on the other hand. Because comparison analyses are made in the laboratory, it is necessary to take random samples. The measurement of the fingerprints takes place directly in the process (on-line and in-situ). Caused by this fact not only the deviation of the different methods influences the quality of the calibration but also the total sampling failure (homogeneity of medium, biochemical reactions from sampling to analysing).

Samples have to be chosen in such a way, that they enable you to cover the whole measuring range with only a few samples. Therefore s::can recommends to take one sample at low and one at high concentration. Under normal circumstances a two-point calibration based on these samples will be satisfactory.

When using calibration standards you have to keep in mind that these standards will always present a different background matrix compared to the real measuring medium.

- Before performing any kind of sample measurement, the cleanliness of the measuring windows should be ensured (please refer to section 9.1).
- Before performing the sample measurement in-situ, the probe has to be submersed into the medium (at least 15 min.).
- When performing the sample measurement with the multifunctional slide, rinse the slide serveral times with the calibration medium (sample) before measuring the sample.
- Perform the sample measurement immediately after filling the multifunctional slide, to avoid any influences due to sedimentation.
- A sample measurement has to be triggered at the same time the sample for laboratory analysis is taken.
- The result of the laboratory analysis can be entered later.
- The calibration will not be executed and used till the menu item <u>Calibrate!</u> is confirmed.
- When performing a parameter calibration the result will be checked for plausibility. In case of faulty calibration an error message will be displayed to the operator.
- On the spectrometer probe itself sample readings and corresponding laboratory results can be stored for each parameter using lo::Tool (see section 6.2.3). Furthermore the coefficients of the local calibration (offset and slope) are stored on the probe.

6.1 Types of Calibration

Depending on the type of the spectrometer probe (G-Serie or spectro::lyser) and the used controller for operation different types of calibration can be performed.

	Offset	Linear	Multi
Number of samples	1 sample	2 samples	3 or more samples
Modified coefficients	offset	offset and slope	offset and slope
con::lyte D-320	possible	possible	not possible
moni::tool V4	possible	possible	possible using samples stored on con::cube
lo::Tool	possible	possible	possible using samples stored on the spec- trometer probe

6.2 Performing a Calibration

6.2.1 Calibration using con::lyte

This controller for operation provides, beside normal calibration procedure (see further down), the possibility for a quick calibration call directly from the parameter view. This is performed by following steps:

- Select the parameter in the parameter display with <u>*Up-*</u> or <u>*Down*</u> button.
- Push <u>OK</u> button, which directly displays the calibration screen.
- Select <u>Sample 1</u> and confirm with <u>OK</u> to store the global (raw) signal of the actual reading.
- Simultaneously take a water sample to analyse real parameter concentration.
- Enter the result from laboratory analyse into the field <u>Lab 1</u>.
- Select entry <u>Perform Calibration</u> and confirm with <u>OK</u>.
- Leave the calibration screen with <u>Back</u> button.

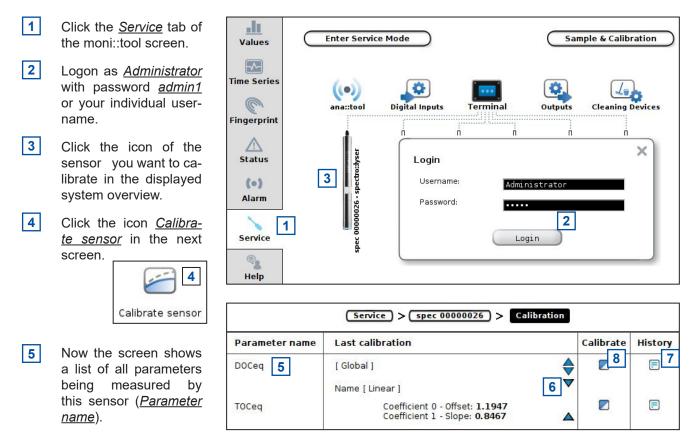
Now the selected parameter is offset calibrated. The advanced local calibration provides extensive possibilities for calibration of selected parameter.

- Select the parameter in the parameter display with <u>Up-</u> or <u>Down</u> button
- Push the <u>Function</u> button.
- Select the menu <u>Calibrate expert...</u> and pushing the <u>OK</u> button

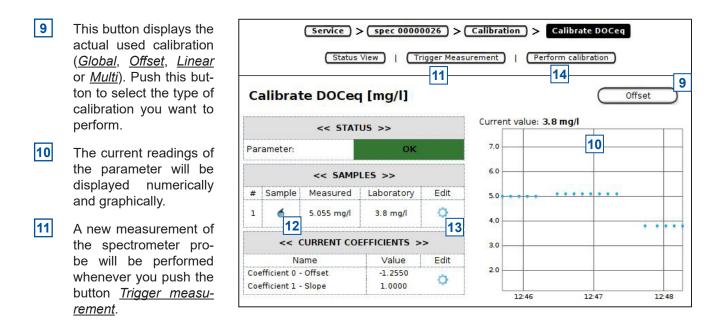
Now the complete calibration screen is displayed and provides the following options:

- Type Two different types of calibration are available: <u>Local</u> or <u>Global</u>. By default <u>Local</u> is selected. This is the normal calibration performed by the operator. As soon as <u>Global</u> is selected and confirmed with <u>OK</u> a reset of this parameter to factory calibration (global) is performed and the actual reading (<u>Value</u>), the default offset (<u>Offset</u>) and the default slope (<u>Slope</u>) will be displayed.
- <u>Mode</u> As available local calibration variants either <u>Offset</u> or <u>Linear</u> can be selected.
- <u>Perform Calibration</u>
 Confirming this entry by pushing the <u>Ok</u> button will execute the local calibration, using the <u>Lab</u> and <u>Sample</u> values displayed on the calibration screen.

< v	P1/4	DOCeq	>
1	21	DOCeq	
▶ ⊥	•) [mg/l	
0	7	NO3-N	
0	• /	mg/l	


P1/DOCeq	
Lab 1:	1.60
Sample 1:	1.32
Perform Calib	oration

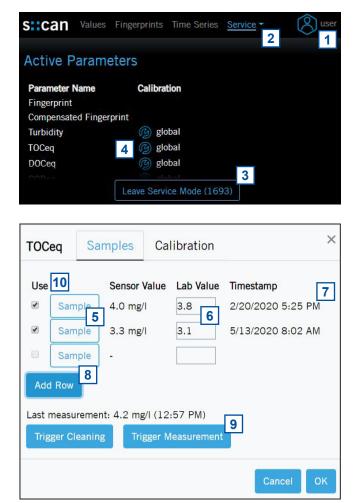
P1/DOCeq	
Type:	Global
Value:	1.31
Offset:	0.000
Slope:	1.000


P1/DOCeq	
Type:	Local
Mode:	Linear
Perform Cal	ibration
Value:	1.59
Lab 1:	1.60
Sample 1:	1.32
Lab 2:	
Sample 2:	
Offset:	0.28
Slope:	1.00

- Displays the measured value of the sensor like on the parameter screen (i.e. using the actual calibration). The value will be updated permanently.
- Lab 1 Within this line the correct value for the measured <u>Sample 1</u> (laboratory result) has to be entered. The unit of the lab value has to be in accordance with the measuring parameter. An entered <u>Lab</u> value can be deleted by selecting it and pushing the <u>Function</u> button so that it will not be used in the calibration.
- <u>Sample 1</u> When confirming this entry by pushing the <u>Ok</u> button, a measurement will be performed and stored as sample 1 for the local calibration. The sample for the laboratory should be taken at the same time.
 Existing readings (<u>Sample 1</u> or <u>Sample 2</u>) are overwritten whenever a new measurement is performed by pushing <u>OK</u>. If no sample measurement was performed or the measurement was invalid, the message <u>Measure!</u> will be displayed instead of a numerical value.
- <u>Offset</u> Displays the used offset of the actual calibration. It is not possible to edit this value. The offset of the global calibration is 0.
- Displays the used slope of the actual calibration. It is not possible to edit this value. The slope of the global calibration is 1.

6.2.2 Calibration using moni::tool

- 6 Clicking on the blue triangles will display more information about actual used calibration for this parameter. The global calibration uses offset=0 and slope=1.
- 7 Furthermore a click on the *<u>History</u>* icon rightmost opens a logbook showing all calibration procedures performed with this con::cube up to now.
- 8 Open the calibration screen by clicking on the <u>Calibrate</u> icon on the right side of the parameter you want to calibrate.


- **12** Push the <u>Sample</u> icon to perform a new measurement and store the reading on the probe. Please note that the value (<u>Measured</u>) displayed below <u>SAMPLES</u> is the raw value, based on the global calibration. The <u>Sample #1</u> will be used for offset and linear calibration.
- **13** Push the <u>*Edit*</u> icon to enter the result of the laboratory analysis and store it on the probe.
- 14 Push the button *Perform Calibration* to start the calibration procedure.

After the calibration procedure is finished a user message will inform you if the local <u>calibration of parameter</u> was <u>successful</u>. In case of an error the reason will be displayed to the user in red letters (e.g. <u>Please enter at least lab</u> <u>values for 2 samples</u>).

The coefficients of the new local calibration will be displayed in the column <u>Value</u>. It is also possible to write coefficients directly onto the probe by pushing the button <u>Edit</u>.

6.2.3 Calibration using lo::Tool

- 1 Enter the IP address of the spectrometer probe into your webbrowser to start Io::Tool. Logout user <u>guest</u> and logon as <u>user</u> or <u>expert</u>. (see section 5.4)
- 2 Select menu <u>Service \ Measurement Settings</u>.
- 3 Push the button *Enter Service Mode*.
- 4 Push the blue calibration icon on the right side of the parameter name you want to calibrate.
- 5 Within the <u>Samples</u> screen all stored samples up to now for this parameter are displayed.
- 6 Results of laboratory analysis can be entered in the row *Lab Values*.
- 7 Date and time when the samples were taken are displayed in the row *<u>Timestamp</u>*.
- 8 If a further sample is needed, push the button <u>Add Row</u>.
- 9 When pushing the button <u>Trigger Measure-</u> <u>ment</u> a new measurement is performed and the readings are displayed above as <u>Last mea-</u> <u>surement</u>. Push the <u>Sample</u> button to add this measurement to the sample row.
- **10** The checkbox on the left side (<u>Use</u>) defines which samples will be used for local calibration.
- 11 Within the <u>Calibration</u> screen the actual used calibration is displayed. Below the <u>Calibration</u> <u>mode</u> (<u>global</u>, <u>offset</u> or <u>linear</u>) the actual used offset (<u>calibration offset</u>) and the slope (<u>calibration slope</u>) are displayed.
- 12 Below the information about the <u>Used Calibration</u> the <u>Suggested Calibrations</u> are displayed. Depending on the number of used samples, it is <u>offset</u> or <u>linear</u> calibration. Simply push the button <u>Use This</u> on the right side of the suggested calibration to use it.

TOCeq	Sar	n <mark>ple</mark> s	Calibrati	on	×
Calibra Calibra	Calibratic ation mode ation Offse ation Slope	e: glob t: 0 1	al -		
Sugges	sted Cali	brations	5		
Mode	Offset	Slope			
offset	-0.173	1	Use This		
linear	0.0102	0.949	Use This	12	
					Cancel

- **13** As soon as the button <u>Use This</u> has been pushed, the new calibration mode with used offset and slope is displayed in the upper part of the calibration screen.
- **14** The used calibration coefficients can be modified manually in the entry field.

TOCec	l Sar	nples	Calibration	I	×
Calibra Calibra Calibra	Calibratic ation mode ation Offse ation Slope sted Cali	e: linea t: 0.01 e: 0.94	02 14 9		
Mode	Offset	Slope			
offset		1	Use This		
linear	0.0102	0.949	Use This		
				С	ancel OK

7 Data Management

7.1 Data Storage

The following information is stored directly on the spectrometer probe in addition to the readings:

- Global calibration for all installed parameters
- Actual used local calibration for each parameter
- Readings of sample measurements for each parameter
- Laboratory results of samples for each parameter
- Reference measurements (air, water)
- Device information (e.g. type, serialnumber, address, please refer to section 10.4)
- Service information in the internal logfile of the probe

The spectrometer probe is equipped with an 8 GB onboard memory (please refer to the technical specifications located at the end of this manual). A fixed part of this memory is reserved to store the measured fingerprints and another part is reserved to store the measured parameter readings. Within the table below there are two examples how many data can be stored maximal. Before the memory is full, the oldest entries will be deleted.

Measuring Interval	No. of Fingerprints	No. of optical Para- meters	Storage capacity of Fingerprints	Storage capacity of Parameters
2 minutes	1	2	555 days	730 days
2 minutes	2	6	277 days	603 days

The storage capacity is related to the measuring interval directly. The number of parameters is not correlated to storage capacity of parameters directly. There are several internal parameters logged additionally. Activating temperature in °C does not decrease storage capacity as it is always logged as internal parameter, but activating temperature in °K counts as additional parameter.

7.2 Data Transfer

If no s::can terminal (con::cube or con::lyte) is used for the operation of the spectrometer probe, there a several possibilities available to transfer the data. In the following sections these options are described.

7.2.1 Data Transfer via visu::tool

vi	su::too	I - Pro				<u> </u>		×
File	Data	Plugins	Help					
Show	Statistics		Ctrl+D	Clean values Status va	atus value	lues		
	s	pectro::lyse	r V3	Ctrl+L		1000	es e treveres	102

Stored fingerprint and parameter results can be downloaded from the spectrometer probe with visu::tool. Please refer to manual visu::tool for further details.

	spectro	::lyser	V3			×
Ho	ost:	192.	168.10.80)	~	🗹 Https
Us	ser: guest					Save
Pa	Password: secret					Save
				Log	jin	Logout
	Nan	ne	Unit	Description	Applicati	on
0	Temper	ature	°C	Medium temperature	['General']
1	Fingerp	rint	Abs/m	Fingerprint measurement	['General']
	Deselect All					
U	UTC+01 Quick select time span: Last 2 🗭 Days 🗸					
20	2022-01-09 09:02:0€ 🗸					
20	022-01-1	1 09:0	2:06 ~			
Ag	gregatio	in:		V New Values	🗌 Until N	low
				Get Sampes	Write t	o File
		C) 🔹 D	ownload SpecRef Down	load	Cancel

7.2.2 Data Transfer via lo::Tool

Stored fingerprint and parameter results can be downloaded from the spectrometer probe with Io:: Tool. The following steps are required:

- 1
 - Start lo::Tool and logon as expert.
- 2 Select menu Time Series and scroll down to the bottom of the screen.
- 3 Push the button Data Download.
- 4 Push the button Create Download Files. Now the download window (File Download Reguest) pops up.
- 5 Select the type of data, that shall be downloaded within the selection field Content. It is possible to download either parameter readings (Measurement data), or measured fingerprints (Fingerprint data), or performed local calibrations (Calibration data) or all configurations performed on the spectrometer probe (Configuration data).
- 6 Select the time period that shall be downloaded (Start date, End date). This option is available for parameter readings and fingerprints only.
- 7 8
- Push the button Start Request.
- After the download is finished (File name is colored blue) the zip file with the measurements can be downloaded by clicking on the file name (Measurement data.zip).

s:can Val	ues Fingerori	ints Time Series	Service T	
	Fil	le Download Reque	est	×
Data Downlo Below you can find tuser request. Link	the list of file cor		ent data - 5	
Please use the butto	on below to c Er	nd date: 23.10.202	21 0 0 7 Cancel Start Re	equest

7.2.3 Data Transfer via FTP, SFTP or SCP

stamp of the last transfer will be displayed below and can be configured if needed. To do this, simply push

the blue icon on the left side.

The setup of an automatic data transfer from the spectrometer probe to an external server is performed by the following steps:

1	Start lo::Tool and logon as <u>expert</u> .	SICAN Values Fingerprints Time Series Service - O expert
2	Select menu <u>Service \ Device Settings \ File</u> <u>Transfer</u> .	2 1 File Transfers Data not available. Loading
3	Push the button <u>Enter Service Mode</u> .	Add new File Upload 5
4	Push the button <u>Edit Settings</u> .	
5	Push the button <u>Add new File Upload</u> to open the window for configuration.	File Transfer Settings ×
6	Select the <u>Protocol</u> , that shall be used (<u>FTP,</u> <u>SFTP</u> or <u>SCP</u>).	This configures an automatic file uploading to a specified server.
7	Enter the address and directory for the desti- nation server.	Protocol: SFTP - Destination server: Destination path: / 7
8	Select the amount of data that shall be transfe- red (<u>Measurement data, Fingerprint data, Con-</u> figuration data, <u>Calibration data</u>).	Destination path: / 7 Remote file prefix: Content: Select one or multiple of the following items Measurement data
9	Select if a <u>Data aggregation</u> (<u>none, hourly</u> or <u>daily</u>) shall be used for <u>Measurement data</u> and define the general transfer interval (<u>Interval</u>).	 B Configuration data Calibration data Data aggregation:
10	Enter the <u>Username</u> and the <u>Password</u> for the destination server.	Interval: 60 minutes Username: 10
11	Push the button <u>Save</u> to store the configuration permanently.	Password:
Alread	ly existing data transfers as well as the time	Data modified. Cancel Save

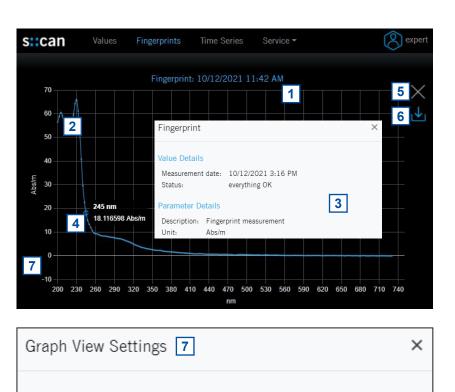
7.3 Data Visualisation

For visualisation of the spectrometer probe readings one of the following s::can controller for operation or s::can tools can be used:

- con::lyte (parameter readings)
- con::cube (parameter readings, time series and fingerprints when using of spectro::lyser)
- con::nect with PC using lo::Tool (parameter readings, time series and fingerprints when using spectro::lyser)
- visu::tool for offline visualisation of readings, fingerprints and status messages

7.3.1 Data Visualisation using lo::Tool

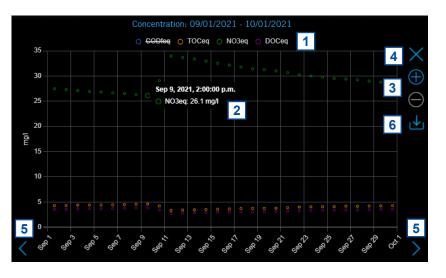
On the <u>Values</u> screen the most actual readings of all active parameters are displayed. When clicking on the parameter reading a window pops up which contains all parameter details.


- Value
- Measurement date
- Status
- Description of the parameter
- Limits of the measuring range
- Actual used local calibration

DOCeq		×
Value Details		
Value:	3.17 mg/l	
Measurement date	e: 10/12/2021 11:09 AM	
Status:	everything OK	
Parameter Detail:	s	
Description:	Dissolved organic carbon	
Limits:	0 mg/l - 180 mg/l	
offset calibration	y = 1 x + 3.01	

On the *Fingerprints* screen the current fingerprint of the spectro::lyser is displayed. There is one diagram for each measured or calculated fingerprint.

- 1 Description of the fingeprint with date and time of measurement.
- 2 Measured fingerprint displayed as Absorption per meter over the wavelengths.
- 3 General information is displayed when clicking somewhere on the background of the displayed fingerprint.
- 4 Detailed information is displayed when moving the cursor over one measuring point.
- 5 Pushing this icon will reset any zoom configuration.
- 6 Pushing this icon will copy the fingerprint data to the clipboard. So the data can be copied to any other program easily.
- 7 When clicking somewhere on the background outside the diagram axis, a window pops up to configure the view (Graph View Settings).



Time Axis (x)	
Time Selection:	12.10.2021 8 15:53 O
Value Axis (y)	
Maximum: 🗹 Au Minimum: 🗆 Ma 9	anual -5 10 Cancel Save

- 8 Within the entry field <u>Time Selection</u> the date and the time of a historical fingerprint that shall be displayed can be entered. Clicking on the calender and time icon will open a selection field.
- 9 The y-axis (Absorbance per meter) is scalled automtically by default. Deactivate the checkbox Automatic to switch to Manual.
- 10 Once the manual scaling is activated, a value for the minimum and the maximum of the y-axis can be entered.
- 11 Push the button <u>Save</u> to store the settings and see the modified display of the fingerprint. Push the button <u>Cancel</u> to keep the fingerprint view unchanged.

Depending on the number and type of parameters one or more diagrams are displayed on the <u>Time Series</u> screen. Within one diagram all parameters using the same unit are summarized.

- 1 Legend of displayed parameter. A parameter can be removed from the diagram by clicking on the parameter name (<u>CODfeq</u>).
- Detailed information is displayed when moving the cursor over one measuring point.
- 3 Zoom icons to diplay one hour, one day, one week or one month.
- 4 Pushing this icon will reset any zoom configuration.
- 5 Arrow icons to move timeseries back or forward.
- 6 Copy icons to copy all displayed parameter readings into the clipboard. So the data can be copied to any other program easily.
- 7 When clicking somewhere on the background outside the diagram axis, a window pops up to configure the view (*Graph View Settings*).

Graph View Settings 7	×
Time Axis (x) Time period: Time Selection: 01.09.2021	
Value Axis (y) Maximum: Manual 35 11 Minimum: Automatic	
	12 Cancel Save

- 8 Within the selection field *<u>Time period</u>* the displayed time frame can be set to <u>month</u>, <u>week</u>, <u>day</u> or <u>hour</u>. The time series starts always on 1st of the month, on Monday, at 0 a.m. or at full hour.
- 9 Within the entry field <u>*Time Selection*</u> the date and the time of historical readings can be entered that shall be displayed. Clicking on the calender and time icon will open a selection field.
- **10** The y-axis is scalled automtically by default. Deactivate the checkbox <u>Automatic</u> to switch to <u>Manual</u>.
- **11** Once the manual scaling is activated, a value for the minimum and the maximum of the y-axis can be entered.
- 12 Push the button <u>Save</u> to store the settings and see the modified display of the time series. Push the button <u>Cancel</u> to keep the time series view unchanged.

At the lower part of the <u>*Time Series*</u> screen there is the possibility to download the measured data from the spectrometer probe (see section 7.2.2).

8 Function Check

A function check might be required for one of the following reasons:

- Initial startup
- Routine function check
- Suspicion of monitoring system malfunction
- Modification of monitoring system (e.g. integration of additional sensor or device)
- Change of measuring location

Depending on the application (water composition), the probes and sensors connected and the environmental conditions a regular function check (weekly to monthly) is recommended. The following sections provide an overview of all the actions that have to be performed to check the monitoring system quickly (see section 8.1), to check the plausibility of the collected readings (see section 8.2) and to check the integrity of a single probe or sensor (see section 8.3).

8.1 Check of System / Monitoring Station

Check	con::lyte	moni::tool / con::cube	Actions needed
Power supply controller	Green LED is on? Text is visible on the display?	LED on housing cover is on or at least flashing? moni::tool screen is dis- played after touching the screen?	Check power supply of controller. Power off controller for 5 minutes and power on again.
System running (up-to-date)	Displayed system time is current and is updated every second?	Click on system clock at the bottom of the screen shows current time and last measurement. Both are current?	Check for displayed error messages. Check if Service mode is acitvated or automatic measurement is paused.
System status	No error messages or error symbols are dis- played?	LED of con::cube is blue and <u>Status</u> icon of moni::tool is not blinking yellow?	See section 10 for Troub- leshooting.
Reason for bad system status	Check logbook entries since last function check.	Open <u>Status</u> tab and select symbol of affected sensor for more informa- tion.	See section 10 for Sta- tus- and Errorcodes.

Check	Remark
Function of automatic cleaning	Use function <u>Clean now</u> or wait for next cleaning cycle. Watch for air bubbles when cleaning is activated or listen if cleaning brush is rotating.
Compressed air supply for automatic cleaning	All tubes and fittings are tight?
Function of compressor and storage tank	Drain condensed water from storage tank of compressor (not necessary for s::can compressor B-32). Check pressure.
Monitoring station (by-pass)	All tubes and fittings are tight and all probes and sensors are supplied with medi- um? No air bubbles within the tubes?
Submersed Installation (in-situ)	Mounting equipment of all devices is ok and all probes and sensors are sub- mersed?
Data transfer	Check if displayed readings on local controller are equal with displayed readings on customer display system.

8.2 Check of Readings

Check	con::lyte	moni::tool / con::cube	Actions needed
Current readings displayed completely	No <u>NaN</u> and no dashes (,) or plus sign (++++,++) displayed. Use arrow buttons to sc- roll through all displayed parameters.	No <u>NaN</u> is displayed.	Check status and confi- guration of parameter.
Current parameter sta- tus of displayed readings	Check logbook entries since last function check.	Red background for parameter indicates an error or alarm. Grey background indicates reading is not current.	Check sensor integrity.
Check	Reason		Remark
Up-to-date: Readings are updated on regulary base?	 Measuring interval is too long Automatic measurement has been stopped manually 		Consider measuring interval and smoothing.
Continuity: Check historical data (timeseries) for inter- ruptions or discontinu- ities	 Change of medium Local calibration Maintenance of probe / sensor (cleaning, etc.) Readings out of range System failure (loss of power, communication error, etc.) Unsteady flow through flow cell installation 		Only possible if timese- ries are availbale.
Plausibility: Timeseries look plausib- le with daily or seasonal fluctuation	 Drift of readings (can be caused by fouling) Increasing noise (can be caused by flow conditions or fouling) Fixed readings / no fluctuation 		Check logbook of plant operator if possible.
Measuring range: Readings are within the specified and calibrated measuring range?			Quality of results might be reduced outside the specified range.
Accuracy: Difference between laboratory (comparison) values and readings of the spectrometer probe		to be performed to ensure	To verify the accuracy of the displayed readings, only a reliable and valida- ted comparison method has to be used.

8.3 Check of Probe / Sensor Integrity (Function Check)

During the software supported function check of the spectrometer probe the operation software of con::cube or con::lyte or Io::Tool will guide the user through all necessary steps, .

Bei der softwareunterstützten Funktionskontolle der Spektrometersonde führt die Bediensoftware von con::cube oder con::lyte oder lo::Tool den Anwender durch alle notwendigen Schritte, where the following is checked:

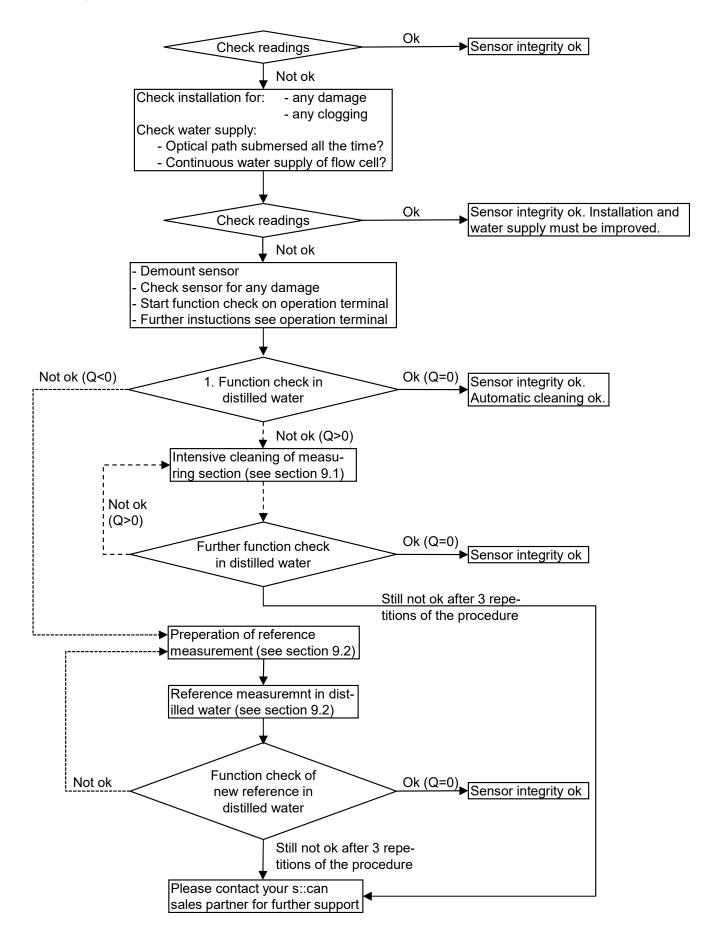
- Effectiveness of the automatic and / or manual cleaning
- Cleanness of the optical measuring windows
- Quality of zero referneced used currently
- Status of internal optic

The software supported function check is executed as follows:

- Take the spectrometer probe out of the measuring medium.
- General cleaning of the probe and careful cleaning of the measuring section. The measuring windows
 themselves must not be cleaned at this point. Finish the cleaning procedure by rinsing with distilled water.
 Start the function check in the operating software or on the controller (see manual of operating software).
- Place the carefully cleaned multifunctional slide over the cleaned measuring section of the spectrometer probe. This step can be skipped when performing function check on air.
- Fill the multifunctional slide with distilled water and pour it out. Rinse the multifunctional slide several times (at least 3 times) in this way. This step can be skipped when performing function check on air.
- Fill the multifunctional slide once again with distilled water. This step can be skipped when performing function check on air.
- Start execution of function check in Io::Tool or on the controller used for operation:
- Io::Tool:
 Service \ Spectral References \ Start Function Check

 con::cube:
 Service \ spectrometer \ Function Check

 con::lyte:
 Status / Manage sensors / Configure... / Execute check!


The probe now executes a measurement. Once the measurement has been finished, a quality number Q between -2 to +2 will be displayed. According to this the following actions are necessary:

- Q = 0: The probe is fully operative and can be mounted again without any modification (sensor integrity is ok).
- Q < 0: A new reference measurement is necessary (see section 9.2).
- Q > 0: Due to fouling of the measuring windows a manual cleaning is required (see section 9.1). If the quality number is still > 0 after three repetitions, proceed as follows:
 - Q = 1: Perform a new reference measurement (see section 9.2).
 - Q = 2: Inform your s::can sales partner or request a RMA.

The s::can website provides a support video, showing the complete prodedure of the function check (link: www.s-can.at/support-video-spectrolyser).

Alternatively, for experienced users it is also possible to assess the status of the measuring windows and reference measurement by looking at the fingerprint recorded when distilled water is measured and comparing these with the zero / background line. When using of the software controlled function check this evaluation is done automatically. The flow chart below gives an overview of the procedure of the function check, which can be divided into several steps. Depending on the results of the test measurements that have to be performed in distilled water or on air, these steps will be executed or not.

8.3.1 Performing a Function Check using con::lyte

Q = 0

When using the con::lyte for operation, the result of the function check will be displayed as follow. The quality number defines the next step necessary (see section 8.3.1).

Q < 0

Suspect of strong (Q=2) or small (Q=1) window fouling.

Perform cleaning until measuring windows are clean (Q=0). At least 3 times. The probe is fully opereative (sensor integrity is ok).

Probe can be installed again without modification. surement is necessary. Perform a new refe-

A new reference mea-

rence measurement (see section 9.2).

ES041	
Function	check
Cleaning	required
Code:0001	-

Continue with OK

Information Check finished. Quality number Q= 2

AS040 Function check successful. Code:0000

Continue with OK

Information Check finished. Quality number Q= 0

ES045
Function check
New reference
required
Code:0010
Continue with OK

Information Check finished. Quality number Q=-2

 \mathbf{x}

8.3.2 Performing a Function Check using moni::tool

When using the con::cube for operation, the result of the function check will be displayed as follow. The quality number defines the next step necessary (see section 8.3.1).

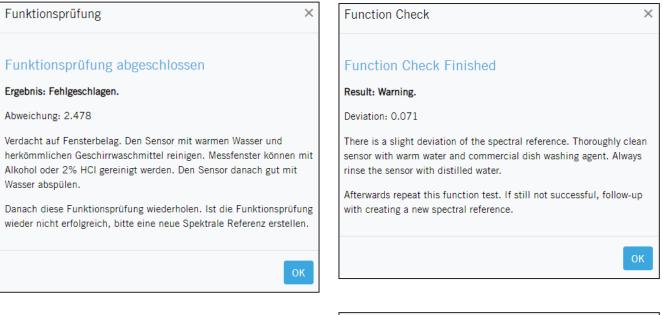
- Q > 0:
- Suspect of strong (Q=2) or small (Q=1) window fouling.
- Perform cleaning until measuring windows are clean (Q=0). At least 3 times.
- Q = 0
- The probe is fully opereative (sensor integrity is ok).
- Probe can be installed again without modification.
- Q < 0
- A new reference measurement is necessary.
- Perform a new reference measurement (see section 9.2).

The result of the function check is displayed in the moni::tool logbook also (see figure on the right).

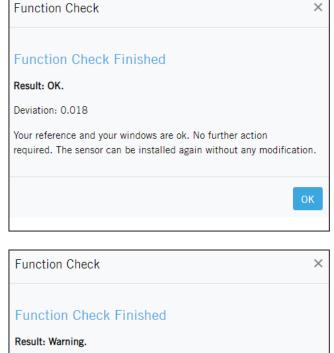
25-Jan-2022 14:36:39

Fu	nction check				
8	Suspicion of window fouling: Thoroughly clean sensor with warm water and commercial dish washing agent. Optical windows can also be cleaned with alcohol or 2% HCI. Always rinse the sensor with distilled water.				
	Code: 0x0001				
		ок			
Fu	nction check				
	Your reference and your windows are o installed again without any modification	k: No further action required. The sensor can be n.			
		ок			
Fu	nction check	×			
8		eference by pressing Set reference to zero.			
		ОК			
	Status >> System is on User is on Critical i	Terminal >>> Logbook s on TML is on Training is on Export all			
< 2	5-Jan-2022 Eevel	Message			
		Function test result of consor rest ten://https/sp2			

USER


data:-1.

21320216.concube3.lan: actions: E_SCAN_SR_CLEAN


8.3.3 Performing a Function Check using Io::Tool

When using the Io::Tool operating software, the result of the function check will be displayed as follow. The quality number defines the next step necessary (see section 8.3.1).

 Q > 0: Suspect of strong (Q=2) or small (Q=1) window fouling. Perform cleaning until measuring windows are clean (Q=0). At least 3 times.

 Q = 0: The probe is fully opereative (sensor integrity is ok). Probe can be installed again without modification.

Q < 0: A new reference measurement is necessary. Perform a new reference measurement (see section 9.2).

Deviation: -0.057

Please create a new spectral reference.

LOBDOOK		
Timestamp	Severity	Message
1/25/2022 11:49 AM	information	Function check properly executed in air. The result is OK. The quality value is 0, extinction minimum: 0.010217 (Abs), maximum: 0.018000 (Abs)
1/25/2022 11:48 AM	information	Function check properly executed in distilled water. Warning, the result is NOT OK. The quality value is 1, extinction minimum: 0.055394 (Abs) maximum: 0.071403 (Abs)

9 Maintenance

9.1 Cleaning

During routine operation the cleaning of the spectrometer probe, i.e. the optical measuring windows of the instrument, is performed automatically (see section 4.3). To clean the probe manually the following is recommended:

Before demounting the probe be sure that automatic air cleaning is deactivated via operating software and air supply line is depressurised to avoid dirt and / or injury by suddenly escaping pressurized air.

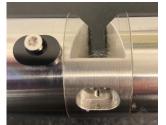
- Rinse sensor with hand-hot (lukewarm) drinking water to remove course deposits.
- Put the probe in a bucket of hand-hot (lukewarm) drinking water for several minutes to remove deposits on and in between the measuring gap.
- To clean the sensor housing a soft cleaning agent (e.g. dish-washing detergent) can be used.

When cleaning the measuring windows, care has to be taken that the windows are not damaged (do not use abrasive materials such as scouring sponges or stiff brushes).

The cleaning of the measuring windows is performed using a soft cloth (one that does not leave behind fibres), cotton swabs or paper tissues that are moistened with cleaning liquid before they are applied. Furthermore, cleaning tissues for eye glasses, e.g. available in supermarkets, are suited. For the removal of strongly adhering fouling, s::can cleaning brushes are available.

The use of the following liquids is allowed for cleaning of the windows.

- Water (can be mixed with a commercial liquid dishwashing agent)
- Pure alcohol (Ethanol)
- s::can cleaning agent
- 3% Hydrochloric acid (HCl) in case of mineral film on the windows


All cleaning liquid must only be applied on the windows using cleaning cloth or tissue. Rinse with distilled water directly after the cleaning. Otherwise the residue of cleaning agents may change the optical characteristics of the windows under UV light and thus lead to a distortion of measurements.

After every step undertaken in the cleaning process, the measuring section must be rinsed with sufficient amounts of distilled water. After finishing the cleaning the internal cleaning tube of the probe shall be spilled with distilled water. This can be done with a disposable syringe as shown in the figure on the right.

In case the cleaning nozzles are blocked, unscrew the black covering on the backside of the measuring section (using a TX10 screw driver) and clean this area in addition (see figure on the right).

9.2 Reference Measurement

All s::can spectrometer probes will be delivered with a high quality reference measurement and therefore can be used at once. The reference measurement serves to define the zero point of all wavelengths that are measured by the spectrometer probe.

A new reference measurement shall only be performed due to result of a performed function check (see section 8.3) or if recommended from your s::can sales partner. As faulty reference measurement will lead to falsification of all subsequent readings, replacing a reference measurement has to be done with great

care.

- Thoroughly clean the measuring section, the measuring windows (see section 9.1) as well as the multifunctional slide.
- Place the carefully cleaned multifunctional slide over the cleaned measuring section of the spectrometer probe.
- Fill the multifunctional slide with distilled water and pour it out. Rinse the multifunctional slide several times (at least 3 times) in that way.
- Fill the multifunctional slide once again with controlled distilled water.
- Start the reference measurement (see the following sections or moni::tool manual or con::lyte manual). The measurement ends automatically and replaces the last reference measurement. With Io::Tool the reference measurement can be started via <u>Service \ Spectral References</u>.
- Check the new reference measurement by means of the function check (quality number Q = 0) or manual measurement in the reference medium (Fingerprint = zero).

High quality distilled water must be used for the reference measurement. In this context, please ensure that it contains no foreign matter (e.g. air bubbles, contamination) whatsever! There is no way to check the quality of the used distilled water automatically.

For the highest possible accuracy of measurements, it is recommended to perform the reference measurement at the environmental temperature and with the probe in the same orientation as it will be used when the probe is installed.

Poor referencing (e.g. when the measuring windows have not been properly cleaned or there are traces of cleaning agents on the measuring windows) will reduce the quality of the readings provided by your spectrometer probe.

Besides the reference measurement with distilled water an additional reference measurement on air is stored on the spectrometer probe. This reference measurement will be used if the function check is performed on air.

9.2.1 Reference Measurement with Io::Tool

All s::can terminals for operation support the possibility to measure a new zero reference. Io::Tool can be used to:

- Measure a new zero reference in distilled water (see section 9.2.3).
- Measure a new air reference (see section 9.2.3) that can be used for a function check on air.
- Activate a previous measured air or water reference (e.g. original references from factory, see section 9.2.2).
- Delete a previous measured air or water reference. Original references from factory cannot be deleted (see section 9.2.2). Existing references cannot be replaced (overwritten).

To perform any of the actions mentioned above, the following steps are needed:

- Start Io::Tool and logon as <u>expert</u> (see section 5.4).
- 2 Select menu <u>Service \ Spectral References</u>.
 - Push the button *Enter Service Mode*.

3

S::Can Values	Fingerprints	Time Series	Service -	Ŕ	expert	
Spectral Refe	Spectral References					
You need to enter Ser	vice Mode to m	anage or creat	te referenc	ces.		
Name	Date	Туре		Status		
production_air	9/1/2021 7:39 AM			valid	Active	
production_water	9/1/2021 8:32 AM	distille water	ed	valid	Active	
Function Check						

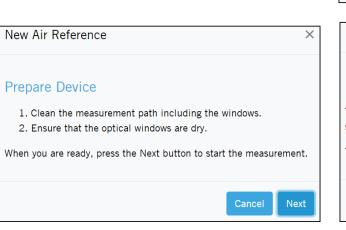
9.2.2 Configuration of Reference Measurement with Io::Tool

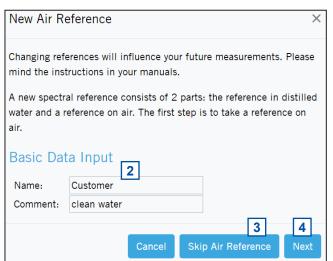
Within the menu <u>Service \ Spectral Reference</u> an overview of all performed reference measurements is displayed (see figure on the right).

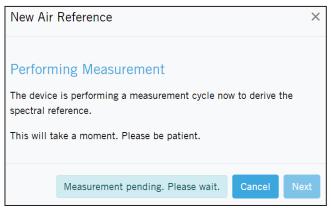
- Name Indication if the reference was mede during production (Original), by the operator via lo::Tool (Customer) or during operation with con::lyte (Modbus) or con::cube (MT-YYYY-MM-DD).
- <u>Date</u> Day and time when the reference measurement was performed.
- <u>Type</u> Indication if it is an air reference or a distilled water reference.
- <u>Status</u> Quality of the reference measurement which can be valid (white) or imprecise (yellow).
- <u>Active</u> Indication that this reference is in use currently (blue).

S	can Values	Fingerprints Time	Series Ser	vice 🕶 🤇	S expert		
Spectral References							
	Name	Date	Туре	Status			
Ø	Original	1/17/2020 3:58 PM	air	valid	Active		
B	Original	1/17/2020 4:00 PM	distilled water	valid			
Ø	Customer	9/9/2021 3:26 PM	air	valid			
Ø	Customer	9/9/2021 3:29 PM	distilled water	valid			
Ø	Modbus	9/10/2021 11:56 AM	distilled water	imprecise			
Ø	Modbus	9/10/2021 12:40 PM	distilled water	valid			
Ø	MT-2021-09- 23T114803Z	9/23/2021 1:48 PM	distilled water	valid	Active		
Crea	Create new Spectral Reference						

To change any configuration within the spectral references the following steps are needed:

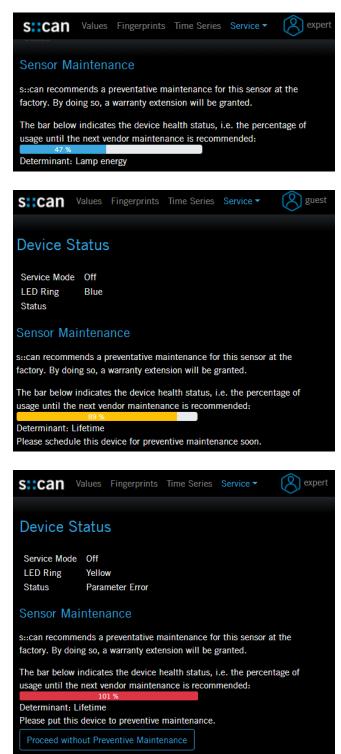

- 1 Push the blue icon on the left side of the reference that needs to be configured.
- 2 The displayed name (*Name*) and the remark (*Comment*) can be modified.
- 3 Push the button <u>*Click to Activate*</u> if this reference shall be used now.
- 4 Push the button <u>Delete Reference</u> if you want to remove the reference permanently. Please note that references from factory cannot be deleted.
- **5** Push the button <u>Save</u> to store the new configuration or push <u>Cancel</u> to keep the previous configuration.


ce Settings ×					
Changing references will influence your future measurements. Please mind the instructions in your manuals.					
Customer					
September 9, 2021 3:29 PM					
valid					
user					
distilled water 2					
clean water					
Click to Activate					
3					
Delete Reference Cancel Save					


9.2.3 New Reference Measurement with Io::Tool

To perform a new spectal reference measurement the following steps are needed:

- 1 Push the button <u>Create new Spectral Refe</u>rrence.
- 2 First enter the Basic Data (<u>Name</u> and <u>Com-</u> <u>ment</u>) of the new reference on air.
- 3 Push the button <u>*Skip Air Reference*</u> if you don't want to measure a reference on air.
- 4 Otherwise push the button <u>Next</u> to start measurement on air. Please note all instructions displayed on the lo::Tool screen (see figures on the right and below).


5	After the air reference measurement is finished or skipped the Basic Data (<i>Name</i> and <i>Com- <u>ment</u></i>) for the distilled water reference can be entered.	New Water Reference As a second step, we take a reference in distilled water.	×
6	Push the button <u>Next</u> to start the measure- ment. Please note all instructions displayed on the Io::Tool screen (see figures on the right and below).	Basic Data Input Name: Customer Comment: Clean water	
7	Push the button <u>Ok</u> when the <u>New Water Refe-</u> <u>rence</u> measurement is finished.	Cancel	Next
New	Water Reference ×	New Water Reference	×
1. (2. 3. 4. 5.	are Device Clean the measurement path including the windows. Flush air cleaning pipe with distilled water. Put cleaned multifunctional slide over measuring path. Rinse the multifunctional slide using distilled water several times. Fill in controlled distilled water. you are ready, press the Next button to start the measurement.	Referencing Finished The creation of spectral references is finished.	7 ОК
	6		

9.3 Predictive Maintenance

s::can recommends a regular maintenance of the spectrometer probe in the factory. In the menu <u>Service</u> / <u>Status</u> the duration until the next maintenance is displayed. This will be calculated based on the device age or the last maintenance, the actual lamp energy and the number of performed measurements.

Once the indicator bar is close to 100 %, the operator will be informed about the recommended maintenance and the Status LED switches from blue to yellow (see section 10.2 and 10.3).

After a confirmation of the operator (pushing the button <u>Proceed without Preventive Maintenance</u>) further measurements are possible and the color of the LED changes from yellow to blue or red. After some time the operator is reminded again about the recommended maintenance.

10 Troubleshooting

10.1 Typical Error Pattern

Error	Reason	Removal
> MAX mg/l TOCeq	 Reading is above the upper measuring range (outside the error limits, see section 5.5.11) 	 Check plausibility of parameters (see section 8.2) Check measuring range of parameter Read the logbook
< MIN mg/l DOCeq	 Reading is far below the lo- wer measuring range (outside the error limits, see section 5.5.11) 	 Check plausibility of parameter (see section 8.2) Check measuring range of parameter Read the logbook
NaN mg/l DOCeq	 Reading cannot be calculated for this parameter 	 Check plausibility of fingerprint Perform check of spectrometer probe (see section 8.3) Read the logbook
15 mg/l CSBeq	 Last reading is not current (i.e. is older than measuring interval + 75 s) 	 Stop Service mode Start automatic measurement again Check measuring interval Read the logbook
4.22 mg/l DOCeq	 At least one parameter error flag is active Hardware error or system error 	Check parameter statusCheck system statusRead the logbook

10.2 LED Ring

The spectrometer probe is equipped with a LED ring on the bottom end of the probe. The color of the LED ring informs about the actual status of the spectrometer probe. The table below explains the meaning of the different LED codes.

Color	Illumination	Status	Comment
blue	continuous	Normal operation	
red	continuous	Device error	Check error message on opera- tor terminal or in lo::Tool
red	continuous	Parameter error	Check parameter status on operator terminal or in lo::Tool
yellow	continuous	Service mode	End service mode for normal operation
yellow	continuous	Maintenance needed	Check status of sensor mainte- nance in lo::Tool (see section 9.3)
blue	regular flashing	Booting sequence	Wait for 2 minutes
blue	fast flashing	Reed switch is aktivated	see section 5.4.2 and 10.6
blue	a short flash every 2 second	Sleep mode	see section 5.4.2
blue	a short flash every 5 seconds	Deep sleep mode	can be activated by s::can Ser- vice only
yellow	regular flashing	Update in progress	Wait up to 35 minutes
red	regular flashing	Factory reset in progress	Wait up to 5 minutes

10.3 Error / Status Messages and Logbook

Within the Io::Tool Status window all logbook messages of the spectrometer are displayed. This can be simple information but also error and status messages.

During execution of a measurement the monitoring system (system status), the measuring device itself (device status) and the result (parameter status) will be checked for possible errors and for plausibility. In case of an error (status bit will be set from 0 to 1) a user message will be displayed to the operator.

s::can	Values	Fingerprin	its Time	e Series	Service 🕶	(Report
Logbook						
Timestamp 1/17/2022 3:14 PM 1/13/2022 1:37 PM		M info	rmation		e sful login of use vice mode.	r 'expert'
1/13/202					service mode.	
1/17/2022 3:21 PM, Idle (154 s)						

There are specific error messages available for the spectrometer probe which are displayed in Io::Tool (see section 10.3.1) and transfered to the controller used for operation also (see section 10.3.2).

Depending on the controller used for operation these messages will be shown on the display (function <u>Monitor...</u> in case of con::lyte D-320, <u>Status</u> tab in case of moni::tool) and also stored within the result files or logfiles. Additional to the user message (general error reason and recommendations for removal) the detailled status code will be displayed either in binary form (0000, 0001, 0010, 0011, 0100, etc.) or as a hex number (0x0001, 0x0002, 0x0004, 0x0008, 0x0010, etc).

Up to 16 status bits are used for different errors. If several errors occur at the same time, the con::lyte and moni::tool will add up all the status bits. This detailed information might be important if you request s::can support. Below you will find examples how to translate these combined hex codes:

Hex	Bin	Bits
0x8000	1000 0000 0000 0000	b15
0x8001	1000 0000 0000 0001	b0, b15
0x4011	0100 0000 0001 0001	b0, b4, b14

All error and status messages as well as additional information for s::can support can be downloaded from the spectrometer probe directly via Io::Tool.

After pushing the button <u>Create Service Data</u> a zip file and a log file will be created and displayed (<u>Device Diagnosis Data.zip</u> and <u>Client Servicedata.log</u>). These files can be downloaded by clicking on the file name.

The service data can be created and downloaded directly in the Status display of moni::tool using the button <u>Sensor Diagnistics</u> (see figure on the right).

sican	Values	Fingerprints	Time Series	Service -	(Report			
Service	Service Data							
	Below you can find various diagnosis files to be provided for s::can service in case of problem analysis.							
Link		Туре	Date	Size	Status			
Device	diagnosi	s data zip	11/30/2021	2 MB	available			
Device	diagnosi	s data zip	1/17/2022	2 MB	available			
Client	Service D	ata log	1/17/2022	200 kB	available			
Please use	the butto	n below to cr	reate new debu	ig informati	on for s::can			
service.								
Create Se	rvice Dat	a						

	Status > spec 00000026
	Sensor Test Sensor Diagnostics
Parameter	Current system status
Sensor status	22-02-2022 14:30 O.K.
Service status:	73.6 %

10.3.1 Error / Status Messages in Io::Tool

No	API name	Message lo::Tool	Reason	Removal
1	VOLT_HIGH	supply voltage too high	Power supply of the spectro- meter probe > 18 VDC	Check power supply
2	VOLT_LOW	supply voltage too low	Power supply of the spectro- meter probe < 9.5 VDC	Check power supply
3	MED_TEMP_ HIGH	water temperature too high	Reading of temperature sensor > 45 °C	Take sensor out of hot medium
4	MED_TEMP_ LOW	water temperature too low	Reading of temperature sensor < 0.0 °C	Take sensor out of cold medium
5	DEV_TEMP_ HIGH	device temperature too high	Reading of internal tempera- ture sensor > 90 °C	Remove sensor from hot environment
6	DEV_TEMP_ LOW	device temperature too low	Reading of internal tempera- ture sensor < 0.0 °C	Remove sensor from cold environment
7	NO_MEDIUM	no medium detected	The shape of the measured fingerprint does not look like a typical application	Check installation and me- dium supply (flow cell setup; water level when installed submersed)

No	API name	Message lo::Tool	Reason	Removal
8	VAL_BELOW	value below minimum	Reading < lower error limit in GC	Check medium and calibrati- on. Error limit is displayed in parameter settings. Activate checkbox <i>Ignore Error</i> .
9	VAL_ABOVE	value above maxi- mum	Reading > upper error limit in GC	Check medium and calibrati- on. Error limit is displayed in parameter settings. Activate checkbox <i>Ignore Error</i> .
10	MED_BELOW	signal below sensor range	Optical signal < 200 counts in medium	Check cleanliness of optical windows and optical path for blocking. Check medium. Maybe different optical path length is needed.
11	MED_ABOVE	signal above sensor range	Optical signal > 65000 counts in medium	Check medium and optical path.
12	COMP_ BELOW	compensation signal below range	Compensation signal < 200 counts	Sensor service needed, request RMA number
13	COMP_ABO- VE	compansation signal above range	Compansation signal > 65000 counts	Sensor service needed, request RMA number
14	CHECK_ BELOW	check signal above range	Check signal < 200 counts	Sensor service needed, request RMA number
15	CHECK_ABO- VE	check signal below range	Check signal > 65000 counts	Sensor service needed, request RMA number
16	DARK_NOISE	dark noise above limit	Dark noise out of limits	Ignore error, if temporary. Request RMA number, if error is permanent.
17	DARK_MAX	maximum dark noise above limit	Dark noise amplitude out of limits	Ignore error, if temporary. Request RMA number, if error is permanent.
18	MEAS_RETRY	retry needed	Measuring process did not finish successfully and was restarted	Wait for next measurement
19	HIGH_STD_ DEV_DARK	high variance dark measurement	Standard deviation of dark measurement > 100	Check if there is any exter- nal influence (e.g. modem).
20	HIGH_STD_ DEV_MEDIUM	high variance of mea- surement signal	Standard deviation in medi- um > 0.05	Check if flow is turbulent or measurement is influenced by air bubbles.
21	HIGH_STD_ DEV_COMP	high variance com- pensation path	Standard deviation of com- pensation > 0.03	Check if power supply is stable. Check for external vibrations.
22	HIGH_STD_ DEV_CHECK	high variance check signal	Standard deviation of check > 0.03	Check if power supply is stable. Check for external vibrations.

No	API name	Message lo::Tool	Reason	Removal
23	MAINT_NEE- DED	maintenance needed	Life time OR number of measurements OR lamp in- tensity has reached limit for predictive maintenance	Request RMA and send spectrometer probe to s::can for Service. Confirm in lo::Tool to proceed without maintenance temporarily.
24	SERV_NEE- DED	service needed	At least one of several inter- nal checks reports an error.	Check logbook entries.
25	HW_DEFECT	hardware error	Hardware error within optical unit	Request RMA, if error is permanent.
26	HIGH_ UNCERT	high signal uncertain- ty	Error during fingerprint or parameter calculation	Request RMA, if error is permanent.
27	NEG_MED	negative medium signal	Optical signal < dark signal	Check cleanliness of optical windows and optical path for blocking. Check medium. Maybe different optical path length is needed.
28	NEG_COMP	negative compensati- on signal	Compensation signal < dark signal	Request RMA, if error is permanent.
29	NEG_CHECK	negative check signal	Check signal < dark signal	Request RMA, if error is permanent.
30	NEG_FP	negative fingerprint	Fingerprint significant below zero (QM of function check is -2)	Perform function check, perform new reference mea- surement.
31	NEG_LIMIT_ EXT	extinction limit reached	Not implemented yet	
32	COMP_ABO- VE_REF	compensation above reference	Compensation signal too high (lamp intensity > 1.3)	Perform new reference mea- surement.
33	COMP_ BELOW_REF	compensation below reference	Compensation signal too low (lamp intensity < 0.5)	Request RMA, if error is permanent.
34	CHECK_ABO- VE_REF	check signal above reference	Check signal too high (> 50 % light energy)	Perform new zero reference. Request RMA, if error is permanent.
35	CHECK_ BELOW_REF	check signal below reference	Check signal too low (< 50 % light energy)	Perform new zero reference. Request RMA, if error is permanent.
36	INV_REF_ ENER	invalid spectral refe- rence	Optical signal < 30000 counts in reference medium	Repeat zero reference. Ignore error, if lower precis- sion of readings is accepted. Request RMA.
37	MATH_ UNCERT	high mathematical uncertainty	Error during calculation of results	Check medium and optical path.
38	MATH_ERR	calculation error	Error during calculation of results	Check medium and optical path.

10.3.2 Error Messages / Statusbits on Controller for Operation

No	API name	Device	Para Public	Para Private	Message moni::tool
1	VOLT_HIGH			b5 - 0020	Power supply of spectrometer is too high
2	VOLT_LOW			b4 - 0010	Power supply of spectrometer is too low
3	MED_TEMP_HIGH	b1 - 0002		b9 - 0200	Sensor misuse Environmental temperature of probe is too high (outside of specification). No measure- ments possible
4	MED_TEMP_LOW	b1 - 0002		b8 - 0100	Sensor misuse Environmental temperature of probe is too low (outside of spe- cification). No measurements possible
5	DEV_TEMP_HIGH	b1 - 0002			Sensor misuse
6	DEV_TEMP_LOW	b1 - 0002			Sensor misuse
7	NO_MEDIUM		b3 - 0008		Parameter error, wrong medium
8	VAL_BELOW		b15 - 8000		Reading out of measuring range
9	VAL_ABOVE		b15 - 8000		Reading out of measuring range
10	MED_BELOW		b3 - 0008		Parameter error, wrong medium
11	MED_ABOVE			b12 - 1000	Probe energy failure (Overflow)
12	COMP_BELOW	b15 - 8000	b1 - 0002	b14 - 4000	Sensor maintenance required Parameter error, hardware error Probe compensation failure (below lower limit)
13	COMP_ABOVE	b15 - 8000	b1 - 0002	b15 - 8000	Sensor maintenance required Parameter error, hardware error Probe compensation failure (above upper limit)
14	CHECK_BELOW	b15 - 8000	b1 - 0002	b14 - 4000	Sensor maintenance required Parameter error, hardware error Probe compensation failure (below lower limit)
15	CHECK_ABOVE	b15 - 8000	b1 - 0002	b15 - 8000	Sensor maintenance required Parameter error, hardware error Probe compensation failure (above upper limit)
16	DARK_NOISE		b1 - 0002	b10 - 0400	Parameter error, hardware error Probe energy failure (Darknoise too high)
17	DARK_MAX	b0 - 0001		b10 - 0400	General sensor error Probe energy failure (Darknoise too high)

No	API name	Device	Para Public	Para Private	Message moni::tool
18	MEAS_RETRY	b0 - 0001		b6 - 0040	General sensor error internal communication problem in board (timeout)
19	HIGH_STD_DEV_ DARK		b6 - 0040		Parameter qualitiy not met
20	HIGH_STD_DEV_ MEDIUM		b6 - 0040		Parameter qualitiy not met
21	HIGH_STD_DEV_ COMP		b6 - 0040		Parameter qualitiy not met
22	HIGH_STD_DEV_ CHECK			b11 - 0800	
23	MAINT_NEEDED	b14 - 4000			Sensor cleaning required
24	SERV_NEEDED	b15 - 8000			Sensor maintenance required
25	HW_DEFECT	b15 - 8000			Sensor maintenance required
26	HIGH_UNCERT		b2 - 0004		Parameter error, configuration error
27	NEG_MED		b3 - 0008		Parameter error, wrong medium
28	NEG_COMP		b3 - 0008		Parameter error, wrong medium
29	NEG_CHECK	b15 - 8000			Sensor maintenance required
30	NEG_FP	b15 - 8000	b2 - 0004		Sensor maintenance required Parameter error, configuration error
31	NEG_LIMIT_EXT		b3 - 0008		Parameter error, wrong medium
32	COMP_ABOVE_REF			b0 - 0001	Actual used reference measu- rement is not valid
33	COMP_BELOW_ REF			b0 - 0001	Actual used reference measu- rement is not valid
34	CHECK_ABOVE_ REF			b0 - 0001	Actual used reference measu- rement is not valid
35	CHECK_BELOW_ REF			b0 - 0001	Actual used reference measu- rement is not valid
36	INV_REF_ENER	b14 - 4000			Sensor cleaning required
37	MATH_UNCERT		b2 - 0004		Parameter error, configuration error
38	MATH_ERR		b2 - 0004		Parameter error, configuration error

10.4 Device Settings

In case detailed sensor information or configuration settings have to be checked, the following sections will explain how to find these information when operating the sensor with a s::can operator terminal.

10.4.1 Check of Device Settings using con::lyte

Select the entry <u>Manage sensors...</u> in the main menu of the status screen. Select the name <u>spectro::lyserV3/0/4</u> in the list of installed sensors, in which the second number (<u>4</u>) indicates the address assigned to the sensor. After confirming the entry <u>Configure...</u> as well as the entry <u>Probesettings</u> in the next view, the following information of the sensor will be displayed:

- Internal sensor identifier (<u>M-Version</u> and <u>Model</u>)
- Sensor name (<u>spectro::lyser</u>)
- Serialnumber of the sensor (<u>S/N</u>)
- Hardware version of the sensor (<u>H/W-Version</u>)
- Software version of the sensor (<u>S/W-Version</u>)
- Information about sensor type (<u>UV-VIS</u>)
- Information about optical pathlength (<u>Path length</u>)
- Information about actual used reference (<u>Name</u>, <u>Date</u>)
- Information about maintenance (<u>xx %</u>)

Information of the single measuring parameter can be retrieved via the entry <u>Para-meter info...</u> from the main menu of the parameter display (see figure on the right). In addition to the parameter name (<u>Name</u>), the unit of measurement (<u>Unit</u>) the number of decimal places (<u>Disp. Format</u>), also the lower and upper limit of the parameter range (<u>P. lower / P. upper</u>) and the adjusted alarm range (<u>Al. lower / Al. upper</u>) are displayed.

P1/DOC	
Sen.: spect	ro::lyse
Name:	DOCeq
Unit:	mg/l
Disp. Format	2
P. lower:	0
P. upper:	180
Al. lower:	,
Al. upper:	,

10.4.2 Check of Device Settings using moni::tool

For checking the sensor settings click on the spectrometer icon within the system overview of the <u>Service</u> tab and select <u>Sensor Settings</u>. Depending on the <u>Service Level</u> (figure below is <u>Service Level</u> <u>Advanced</u>) some or all of the following information will be displayed:

- Interface of the sensor (<u>Address</u>)
- Sensor name used internal (*internal*). Should not be changed by the operator.
- <u>Sensor Name</u> allocated to the device by the operator
- Manufacturer name of the sensor (<u>Vendor</u>)
- Type of the sensor (*Model*)
- Serial number of the sensor (Serial Number)
- Number of available parameters (<u>Parameter</u> <u>count</u>)
- Information regarding the purchase (<u>Purchase</u> <u>date</u>, <u>Warranty expiry date</u>). Can be entered by the operator at initial startup.
- Actual hardware and software version of the sensor (*HW Version*, *SW Version*)
- Cleaning device allocated to the sensor (<u>Cleaning device</u>)
- <u>Sensor Model</u> of the spectrometer probe
- Type of the spectrometer probe (*Detector Type*)
- <u>Optical Path Length</u> of the spectrometer probe in mm
- Name of the actual used zero reference (<u>Reference</u>)

<< GENERAL SETTINGS	>>
Sensor name:	spec 00000026
Vendor:	s::can
Model:	spectro::lyser
Serial number:	0000026
Parameter count:	40
HW Version:	3.2
SW Version:	2.0-123-g578a5d0
<< ADDITIONAL SETTING	S >>
Sensor Model:	3.0
Detector Type:	UV/Vis
Optical Path Length:	5.0 mm
Reference:	Original
Reference date:	2020-01-17T14:00:14.933Z

- Internal number of the actual used zero reference (<u>Reference index</u>)
- Date of the actual used zero reference (Reference date)
- Actual used operation mode of the spectrometer probe (Measurement mode)
- Actual used measuring interval of the spectrometer probe (Measurement interval)
- Logging interval for Datalogger of the spectrometer probe
- Actual used mode of allocated <u>cleaning</u> device (e.g. automatic, manual off)
- Actual used cleaning interval (*<u>Time between cleaning</u>*) in sec.
- Actual used cleaning duration (*Cleaning duration*) in sec.
- Actual used waiting time (<u>Delay after cleaning</u>) in sec.
- Settings for sleep mode (<u>automatic</u>, <u>ramsleep</u>, <u>eep</u>)
- Settings for predictive maintenance (*false*, *true*)
- Percentage display until next predictive maintenance (serviceStatus)
- Serial number of controller used for operation (*eTerminalId*)
- Used port number of spectrometer probe on terminal used for operation (<u>ePrivatelotoolsPort</u>)
- History information about installation (<u>Installed on</u>, <u>Installed by</u>)

10.4.3 Check of Device Settings using Io::Tool

Enter the IP address of the spectrometer probe into your webbrowser to start Io::Tool (see section 5.3.3 and 5.4). Now select menu <u>Service \ Device Settings</u> to display the following information:

- User specific <u>Name</u> of the location
- <u>Description</u> of the measuring device
- Detector type (e.g. UV/Vis) and optical path length of the spectrometer probe (<u>Device Type</u>)
- Serial number of the sensor (<u>Serial Number</u>)
- Production date of the sensor (<u>Manufacturing</u> <u>Date</u>)
- Actual software version of the sensor (<u>Software</u> <u>Version</u>)
- Actual hardware version of the sensor (<u>Hardware</u> <u>Version</u>)
- Information if <u>Automatic Sleep</u> mode is activated or not
- Within the <u>Network Settings</u> all <u>Current IP</u> <u>Addresses</u> are displayed (static IP, <u>Wifi</u>, etc.).
- The *Mode* can be *static* or *DHCP*.
- For actual network settings the following options are possible: <u>enabled</u>, <u>disabled</u> or <u>at startup only</u> (i.e. connection is enabled for approx. 10 minutes after a power reset of the spectrometer probe).

If WLAN is switched off during operation, the reed switch can be used to activate WLAN (please refer to section 5.4.2). The LED will start flashing for 5 seconds when the reed switch contact is activated. Now WLAN is active for 10 minutes and connection via mobile devices possible.

Device Settings

Name:	Aquarium
Description:	spectro::lyser V3.0
Device Type:	UV/VIS, 35 mm
Serial Number:	0000004
Manufacturing Date:	November 13, 2019
Software Version:	1.1-5
Hardware Version:	3.2
Automatic Sleep:	no

Network Settings

Current IP Addresses:	192.168.167.4/24
	192.168.43.1/24 (wifi)
	192.168.44.1/24 (bluetooth)
Mode:	static
Static IP Address:	192.168.167.4/24
Default Gateway:	192.168.167.254
DNS:	192.168.167.254
WLAN:	enabled
Bluetooth:	enabled
s::can Service Access:	no

 \wedge

For best measurement performance, for reduced energy consumption and for security reasons s::can recommends to use configuration <u>disabled</u> or <u>at startup only</u> for Bluetooth and WLAN.

- Information if <u>s::can Service Access</u> is activated or not.
- Status of actual <u>Connector Pin Usage</u>. The following options are possible: <u>Modbus</u>, <u>air</u> <u>cleaning</u> or <u>brush cleaning</u>.

If a cleaning device is chosen, the spectrometer probe can not use Modbus RTU anymore. If Modbus is used, the spectrometer probe can not trigger a cleaning device directly.

- Information if <u>Modbus TCP</u> is enabled (<u>yes</u>) or disabled (<u>no</u>).
- Actual status of <u>NTP</u> server (enabled or disabled)
- Actual date and time of the internal clock (<u>Device</u> <u>Timestamp</u>).
- Actual used time zone (*Time Zone*).

Modbus / IO SettingsConnector Pin Usage:brush cleaningModbus TCP Enabled:yesTime SettingsroNTP Enabled:noDevice Timestamp:8/19/2020 12:16:16 PMTime Zone:Europe/ViennaEdit Settings

To modify the device properties logon as user <u>expert</u> is needed. Then push the button <u>Edit Settings</u> which is visible below the <u>Time Settings</u>. Now properties can be modified. After all changes are finished, push the button <u>Save</u> <u>Changes</u> to change the configuration permanently.

10.5 Software Update

A firmware update shall be performed by trained personal only. There are several possibilities how the update can be performed. The update procedure is always performed by the following steps:

- Check the software version installed on the spectrometer probe currently (see section 10.4.1, 10.4.2 or 10.4.3).
- Have the correct update package available (download from s::can Server or ask your s::can Sales Partner).
- Upload of update package to the spectrometer probe. This can be done with the spectrometer probe connected to the internet directly, with Io::Tool from a mobile device or with the con::cube.
- File processing on spectrometer probe. This is performed automatically on the spectrometer probe after successful upload of the update package.
- Installation of new firmware. This is performed on the spectrometer probe after successful file processing.

The most recommended procedure, to perform a software update via lo::Tool with the spectrometer probe connected to the internet, is performed by the following steps:

- Enter the IP of the spectrometer probe into your webbrowser to start Io::Tool (see section 5.3.3).
- Logout user <u>guest</u> and logon as <u>expert</u> (see section 5.4).
- Select menu <u>Service \ Licenses and</u> <u>Updates</u>.
- Below the header line <u>Software Up-</u> <u>dates</u> all available download files are displayed. You can also push the button <u>Check for Online Updates now</u> to search for actual updates.
- Select the most actual version and push the button <u>Download</u>.
- If the spectrometer probe is not connected to the Internet the update file can be uploaded from a connected mobile device. Push the button <u>Upload</u> <u>Configuration File</u> to select the file on the mobile device.
- After the download is finished push the button <u>Install</u> to start the update procedure.

The Software Update function will be used for upload and installation of additional parameter licenses (Global Calibrations) also.

10.6 Reboot and Factory Reset of Spectrometer Probe

If necessary, a reboot of the spectrometer probe can be performed by pushing the button <u>*Reboot Device*</u> (see figure on the right).

When pushing the button <u>Perform Factory Reset</u> the spectrometer probe will be reset to the state at delivery. All customer specific settings and configurations are lost. Please contact your s::can sales partner in case of open questions.

A factory reset can be perform via the reed switch of the spectrometer probe also. This might be necessary, if no remote connection to the probe is possible and lo::Tool cannot be started. The procedure is performed by the following steps:

s::can	Values	Fingerprints	Time Series	Service -	R expert
The last check	for avail	able online so	ftware update:	Measureme	nt Settings
4:02 PM				Spectral Re	ferences
Check for Or	line Upo	lates now		Device Sett	ings
				Licenses an	d Updates
Device Res	set			Status	
Reboot Devic	ce F	Perform Factor	y Reset		

- Power off the spectrometer and place it onto a flat surface with the measuring path facing upwards.
- Place the magnet below the LED ring. That means the magnet is located below the serial number written on the type label (see figure in the right).
- Power on the spectrometer and ensure that the magnet does not move.
- As soon as the LED ring starts flashing, start to count the number of flashes. After 15 flashes (corresponding to 30 sec.) remove the magnet.
- As soon as the magnet is removed, start again to count the number of flashes.

If the spectrometer stops flashing and the LED ring is permanently red, yellow or blue before you have counted up to 15 flashes, the reset has failed. Power off the spectrometer and start the complete procedure from the beginning.

If the spectrometer stops flashing and the LED ring is permanently red, yellow or blue after 1 - 4 minutes, the reset was successful.

10.7 Return Consignment (RMA - Return Material Authorization)

Return consignments of the s::can monitoring system, or parts of the system, shall be done in a packaging that protects the device (original packaging or protective covering if possible). Before returning a consignment, you have to contact your s::can sales partner or s::can customer support (support@s-can.at). A RMA number will be assigned for each device, independent if the reason of the return consignment is service, repair or demo equipment.

RMA numbers can be requested from the s::can Customer Portal available on the s::can website directly. Return consignments without an RMA number will not be accepted. The customer always has to bear the costs for return consignment.

11 Accessories

11.1 Installation

11.1.1 Extension Cable

The cable of the spectrometer probe can be elongated when necessary with an extension cable (10 m or 20 m length). The extension cable is attached using the probe cable connector plug.

Name	Specification	Remark
Part-no.	C-210-V3 C-220-V3	
Cable length	10 m 20 m	C-210-V3 C-220-V3
Assembling	ex works	
Material	polyurethane jacket with double screening	cable
Interface connection	M12 RSTS 8Y (IP 67), RS 485, Ethernet	to s::can probe cable and controller

11.1.2 Connection Cable for Spectrometer Probe V3 to MIL-Plug

For connection of the spectrometer probe V3 to a con::lyte with MIL-plug connection a specific adapter cable is available.

Name	Specification	Remark
Part-no.	C-32-V3	
Cable length	0.3 m	
Assembling	ex works	
Material	polyurethane jacket with double screening	cable
Interface connection	M12 RSTS 8Y (IP 67), RS 485, Ethernet	to s::can controller with MIL-plug

Please note that for connection to s::can terminal con::cube D-315 this cable will provide limited compartibility with Legarcy Mode only. For full compartibility the con::nect box B-33-012 has to be used.

11.1.3 Connection Cable for Spectrometer Probe V2 to M12-Plug

For connection of the spectrometer probe V2 to a con::cube D-330 with M12-plug connection a specific adapter cable is available.

Name	Specification	Remark
Part-no.	C-32-MIL	
Cable length	0.3 m	
Assembling	ex works	
Material	polyurethane jacket with double screening	cable
Interface connection	M12 RSTS 8Y (IP 67), RS 485, Ethernet	to s::can controller with M12-plug

11.1.4 Spectrometer Probe Mounting (inclined / horizontal)

For proper, inclined or horizontal submersed installation of the spectrometer probe a seperate probe carrier with 45° connection bend is available. This part can be extended by a pipe (to be provided by the customer) if necessary. For length > 1 m stainless steel pipes or plastic pipes with higher wall thickness are recommended.

Name	Specification	Remark
Part-no.	F-110-V3	
Scope of delivery	1 mounting pipe 2 spacer rings 3 fixing screws (M5x10)	
Material	PVC POM stainless steel	mounting pipe spacer rings fixing screw
Dimensions	73 / 396 mm	diameter / length
Weight	approx. 0.9 kg	
Process connection	ID 50 mm	to mounting pipe OD 50 mm
Installation / mounting	submersed (in situ)	see section 4.2.1

Besides the existing carrier, already known from previous versions of the spectrometer probe, a new probe carrier is available.

Name	Specification	Remark
Part-no.	F-140-V3	
Scope of delivery	1 mounting pipe 1 spacer ring	
Material	PVC POM	mounting pipe spacer ring
Dimensions	128 / 294 mm	high / length
Weight	approx. 0.6 kg	
Process connection	ID 50 mm	to mounting pipe OD 50 mm
Installation / mounting	submersed (in situ)	see section 4.2.1

11.1.5 Spectrometer Probe Mounting (vertical)

For proper, vertical submersed installation of the spectrometer probe a seperate probe carrier is available. This part can be extended by a pipe (to be provided by the customer) if necessary. For length > 1 m stainless steel pipes or plastic pipes with higher wall thickness are recommended.

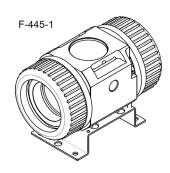
Name	Specification	Remark
Part-no.	F-120-V3	
Scope of delivery	1 mounting pipe 2 spacer rings 3 fixing screws (M5x10)	
Material	PVC POM stainless steel	mounting pipe spacer rings fixing screw
Dimensions	73 / 317 mm	diameter / length
Weight	approx. 0.6 kg	
Process connection	ID 50 mm	to mounting pipe OD 50 mm
Installation / mounting	submersed (in situ)	see section 4.2.1

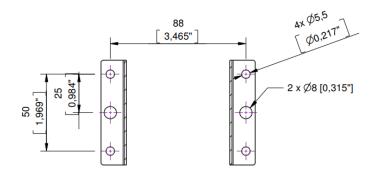
Besides the existing carrier, already known from previous versions of the spectrometer probe, a new probe carrier is available.

Name	Specification	Remark
Part-no.	F-150-V3	
Scope of delivery	1 mounting pipe 1 spacer ring	
Material	PVC POM	mounting pipe spacer rings
Dimensions	83 / 309 mm	diameter / length
Weight	approx. 0.6 kg	
Process connection	ID 50 mm	to mounting pipe OD 50 mm
Installation / mounting	submersed (in situ)	see section 4.2.1

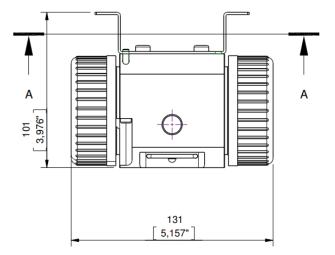
11.1.6 Railing Bracket / Fixing Adapter

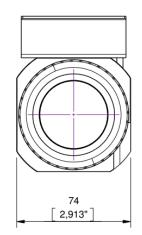
For proper and easy mounting of installation pipes onto the railing a seperate fixing adapter carries is available.


Name	Specification	Remark
Part-no.	F-15	
Material	Stainless steel	
Dimensions	158 / 267 / 73 mm	W / H / D
Weight	approx. 2.8 kg	
Process connection	50 mm	OD extension pipe of spectrometer carrier
Installation / mounting	up to 64 mm (2.5 inch)	OD of railing



11.1.7 Flow Cell Setup Clean Water

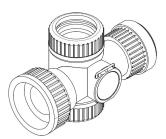

For measurement of sample stream outside the medium with a spectrometer probe a separate flow-through installation is available.

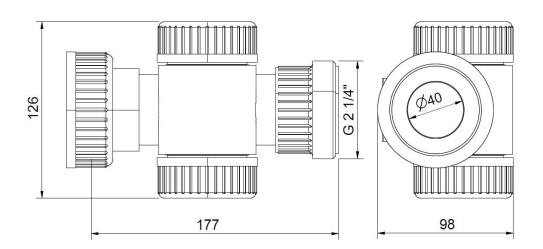

Name	Specification	Remark
Part-no.	F-445-V3	suitable for all OPL
Material	POM-C stainless steel	flow cell mounting
Dimensions	132 / 101 / 74 mm	W / H / D
Weight	approx. 0.45 kg	
Process connection	¹ / ₄ inch inside	
Installation / mounting	flow-through (by pass)	
Operating temperature	0 to 60 °C (32 to 140 °F)	
Operating pressure	0 to 6 bar (0 to 87 psi)	
Accessories	Hose nozzle ¹ / ₄ inch (ID 6 mm)	F-45-PROCESS

11.1.8 Flow Cell Setup autobrush

For measurement of sample stream outside the medium with a spectrometer probe in such applications, where fouling of the measuring windows may occur and automatic cleaning with compressed air is not sufficient or not applicable, a separate flow-through installation with an automatic brush is available.

Name	Specification	Remark
Part-no.	F-446-V3	for 35 mm OPL
Material	POM-C stainless steel	flow cell mounting
Dimensions	132 / 155 / 74 mm	W/H/D
Weight	approx . 0.9 kg	
Power supply	10.5 to 13.5 VDC	
Power consumption	1.2 W (typ.)	
Process connection	¹ / ₄ inch inside	
Installation / mounting	flow-through (by pass)	
Operating temperature	0 to 40 °C (32 to 104 °F)	
Operating pressure	0 to 6 bar (0 to 87 psi)	
Accessories	Hose nozzle ${}^{1\!/}_{_4}$ inch (ID 6 mm)	F-45-PROCESS




For this s::can product a seperate manual is available.

11.1.9 Flow Cell Setup Waste Water

For measurement of waste water sample stream outside the medium with a spectrometer probe a separate flow-through installation is available.

Name	Specification	Remark
Part-no.	F-48-V3	suitable for all OPL
Material	PVC	
Dimensions	126 / 98 / 177 mm	W / H / D
Weight	approx. 0.65 kg	
Process connection	ID 40 mm	
Installation / mounting	flow-through (by pass)	
Operating pressure	0 to 3 bar (0 to 43.5 psi)	

11.1.10 System Panel micro::station

For easy attachment of a complete s::can monitoring system (s::can controller, flow cell autobrush and two other flow cells) a separate system panel with holes for mounting of different devices is available.

Name	Specification	Remark
Part-no.	F-501-ECO-EU F-501-ECO-US	
Material	PP	
Dimensions	450 / 750 / 10 mm 450 / 750 / 210 mm	W / H / D (panel itself) W / H / D (required depth)
Process connection	G $\frac{1}{4}$ inch $\frac{1}{4}$ inch NPT	F-501-ECO-EU F-501-ECO-US

11.2 Automatic Cleaning

11.2.1 Pressure Connection Set

For connection of the automatic air cleaning system of the spectrometer probe a specific pressure connection set is available.

Name	Specification	Remark
Part-no.	B-41-sensor	
Pressure hose	3 m	ID 4 mm / OD 6 mm
Assembling	ex works	
Material	PU Nickel-plated brass	tube connection fitting
Process connection	³ / ₈ inch	
Operating pressure	1 to 6 bar (14.5 to 87 psi)	

11.3 Maintenance

11.3.1 Cleaning Brush

For easy and proper manual cleaning of the measuring windows of the spectrometer probes a specific brush is available. This is especially suited for mechanical removal of persistent window fouling.

Name	Specification	Remark
Part-no.	B-60-2	for OPL 5 and 35 mm
Dimensions	200 mm	length

11.3.2 Cleaning Agent

For easy and proper manual cleaning of the measuring windows of the spectrometer probes a specific cleaning agent is available. It is especially suited for chemical removal of grease and persistent organic window fouling.

Name	Specification	Remark
Part-no.	B-61-1	
Weight	approx. 1.3 kg	
Volume	1 000 ml	

11.3.3 Multifunctional Slide

For easy and proper function check and reference measurements of the spectrometer probe a multifunctional slide is available.

This slide can also be used for measuring individual samples outside the process flow (e.g. spot samples in a laboratory). To place the multifunctional slide without requiring excessive force and risk of damaging the O-rings, the contacting surfaces on the probe, as well as the O-rings of the multifunctional slide can be moistened with water.

After fitting, the multifunctional slide must always be rinsed first using distilled water. This is done to avoid influence of subsequent measurements by traces of O-ring material left on the probe during fitting.

Name	Specification	Remark
Part-no.	B-421-V3	
Material	POM-H FPM	housing sealing
Dimensions	100 / 60 mm 26 mm	W / D circular opening
Volume	10 ml 25 ml	for 1 mm OPL for 35 mm OPL
Weight	approx. 0.2 kg	

12 Technical Specifications

Name	Specification	Remark
Part-no.	SP3-1-xx-NO-yyy G3-1-xx-NO-xxx	spectro::lyser G-Serie (no access to fingerprint), see section 3.3 for further details
Measuring parameter	depending on type and installed global calibrations	see section 5.5
Measuring principle	UV-Vis spectrometry with xenon flash lamp (190 - 750 nm)	256 photo diodes, dual beam ins- trument, automatic compensation of flash lamp aging
Automatic spectral compensation	Turbidity, solids, organic substan- ces, etc.	compensation of cross sensitivities
Measuring range	depending on optical pathlegth (OPL)	
Resolution	2.5 nm	wavelenght
Measurement interval	15 sec (min.) 120 sec (typical)	min. depending on number of pa- rameters and application
Accuracy spectro::lyser	NO3-STD: +/- 2% + 1/OPL [mg/l] COD-KHP: +/- 2% + 10/OPL [mg/l]	in standard solution (>1 mg/l) OPL optical pathlength
Accuracy G-Serie	NO3-STD: +/- 3% + 1/OPL [mg/l] COD-KHP: +/- 3% + 10/OPL [mg/l]	in standard solution (>1 mg/l) OPL optical pathlength
Repeatability	+/- 0.004 Abs spectro::lyser +/- 0.010 Abs G-Serie	in air at 20°C with 10 flashes per measurement without averaging of measurements
Drift (peak to peak)	< +/- 0.005 Abs./day - spectro::lyser < +/- 0.010 Abs./day - G-Serie	in air at 20°C with 10 flashes per measurement without averaging of measurements
Global calibration	all parameter precalibrated ex- works	depending on application
Local calibration	offset or linear	to real (local) water matrix
Reference	distilled water, air	e.g. dist. water for analysis by Merck
Temperature sensor	0 to 45 °C (32 to 113 °F) 0.1 °C resolution	readings displayed license free
Sensors internal	Supply voltage, tilt and rotation	readings display for s::can service
Power supply	10 to 18 VDC, 350 mA < 1.5 A	full activity during flashing (measuring pro- cess)
	5 mA	in sleep modus (logger mode)
Power consumption	3.0 W (typical) 20 W (max) 60 mW (during sleep mode)	Sleep mode can be activated from remote (e.g. LTE modem) either via REST API or via Modbus

Name	Specification	Remark
Electrical potential	max. 1 Ohm < 0.5 Ohm	max. resistance between power supply earth of probe (=PE) and the real site ground resistance between the medium to be measured and the ground of the probe's power supply (e.g. con::lyte, con::cube)
Electrical isolation	galvanic isolation	between electronic and housing
Sensor cable length	1.0 m fixed cable 7.5 m fixed cable 15 m fixed cable	-010 -075 -150
Max. recommended sensor cable length	12.5 VDC 18 m 13.5 VDC 23 m 15.0 VDC 31 m 18.0 VDC 46 m	con::lyte D-320 con::cube D-315 con::cube D-330
Sensor cable specification	OD 8 mm +/- 0.5 mm, polyuretha- ne jacket with double screening	min. bending radius 5 cm, no buck- ling allowed at probe connection
Status information	RGB LED ring on bottom	see section 10.2
Interface connection	M12 RSTS 8Y (IP 67), RS 485, Ethernet	to s::can operator terminal
Interface connection to third party terminals	con::nect V3 incl. Modbus RTU, REST API	for proper Modbus communication with 3rd party operator terminals ensure a terminating resistance of 120 Ohm
Digital interface for cleaning device	1 digital in/out ; 1 digital out	only available when Modbus is not in use
Network connection	100Base-T Ethernet, Bluetooth, WLAN	Bluetooth and WLAN only works if sensor is not submersed comple- tely
Network ports	HTTP	for lo::Tool for lo::Tool Default server: pool.ntp.org
Sensor materials (in contact with measuring medi- um)	stainless steel 1.4404 X2 Cr Ni Mo 17-12-2 fused silica (UV-grade) sapphire (Al ₂ O ₃)	housing (ISO) DIN material number measuring windows (OPL 35 mm) measuring windows (OPL 1 and 5 mm)
Weight	ca. 3.4 kg	incl. cable
Dimension (without cable gland)	44 / 473 mm 44 / 457 mm 44 / 453 mm	diameter / length (OPL 35 mm) diameter / length (OPL 5 mm) diameter / length (OPL 1 mm)
Operating limits temperature	0 to 45 °C (32 to 113 °F) up to 50 °C (122 °F) < 3 minutes	temperature, min. freezing, max. 45°C submerged
Operating limits pressure	0 to 5 bar (0 to 72.5 psi)	
Operating limits others	max. 3 m/s max. 30 Nm	flowrate mechanical stability, centric load, adequate for most known appli- cation conditions and all s::can installation / mounting parts

Name	Specification	Remark
Storage limits temperature	-10 to 65 °C (14 to 149 °F)	probe has to be acclimatised to medium temperature before initial operation
Installation / mounting	submersed or in flow cell	
Environment rating (IP)	IP 68	
Internal storage	8 GB on board memory	see section 7.1
Back-up battery	5 years life duration without exter- nal power supply (e.g. storage)	exchange by s::can service only
Automatic cleaning - probe con- nection	G $\left.^{1\!}\right/_{\!_{\! 8}}$ inch for air hose OD 6 mm	
Automatic cleaning - specification	compressed air, free of oil & par- ticles min. 3 bar (43.5 psi) max. 6 bar (87 psi)	medium (drinking water alternative) allowed pressure at probe cleaning connection
Automatic cleaning - settings	duration: 1 to 10 sec. interval: 1 min. to 6 hours delay: >10 sec.	valve open or brush rotating depending on application delay until start of next measure- ment (consider that flow cell has to be filled up with new medium)
Mechanical tests	deviation, shock, temperature 8 bar (116 psi)	acc. internal quality criteria leak test
Quality tests	99% within tolerance over 24 hours NO ₃ standard solution 8 fingerprints within specification	precision / stability linearity absorbance in distilled water
Light source	xenon gas discharge lamp	
Stability light source	> 99 % > 99.5 % (typical)	UV-Vis (230 - 650 nm) standard deviation in air at 20°C with 10 flashes
Life time light source	> 1 x 10 ⁹ flashes	Life time = 50 % of output energy
Protection light source	shielded, encapsulated	
Regulation light energy	between 60 and 100%	by s::can service only
Flashes per measurement	20 - 60 flashes / measurement	depending on application
Predictive maintenance ligth source	after 2 - 3 years after 1 - 2 Mio. measurements at lamp intensity 50 - 60 %	for one-time extension of the war- ranty claim by 3 years (Item-no. X-03-SPECTRO)
Warranty standard	2 years	
Warranty extended (optional)	3 years	

Name	Specification	Remark
Conformity - environmental testing	EN 60721-3	
Conformity - EMC	EN 61326-1	
Conformity - RoHS2	EN 50581	
Assignment Probe Plug (pin side view)	 Brown (BN) Blue (BU) White (WH) Black (BK) White / Green (WH-GN)	RS458 Data - +12 V Power supply Ground Power supply Ethernet pair 1 Ethernet pair 1 Ethernet pair 2

s::can GmbH

Brigittagasse 22-24, 1200 Vienna, Austria Tel.: +43 (0) 1 219 73 93 - 0 Fax: +43 (0) 1 219 73 93 - 12 office@s-can.at www.s-can.at

