Continuous Online Water Quality Monitoring

Climate change and drinking water production, storage and distribution

From regionally varying changes in groundwater recharge to increased extreme weather events, the global rise in temperature in regard to climate change affects the water supply in many different ways.

Changes in temperature influence a large number of chemical, physical and microbiological parameters and processes. Such changes affect the groundwater itself and thus the raw water quality, e.g. a possible increase in dissolved organic carbon, expressed by the DOC, the manganese concentration, and, associated with this, a lower oxygen concentration.

Similarly, an influence on subsequent processes in the treatment, storage and distribution of drinking water up to the consumer can be expected. Even a slight increase in temperature can lead to general changes in the microbiological processes in the drinking water supply, with an increased temperature and an unusual odour and taste more likely to be perceived as a quality problem in the majority of consumers.

Project description

With this in mind, the project “Effects of elevated water temperatures in drinking water production, storage and distribution” aims to assess the described effects to Austrian water industry and to investigate strategies to avoid negative consequences. The focus here is on determining the microbiological situation in drinking water distribution as the area most directly exposed to the changed climatic conditions.

The project partners are the provinces of Lower Austria, Upper Austria, Styria and Salzburg, the BMVURT (Federal Ministry of Agriculture, Forestry, Environment and Water Management), the ÖWG (Austrian Association for Gas and Water), a number of water suppliers from the above-mentioned provinces as well as from Vienna and Burgenland, and the Viennese company s:scan Messtechnik GmbH.

The main steps of the project were defined as follows:

- Microbiological sampling of 24 water suppliers over a period of one year to record temperature-associated changes in microbiological status.
- Installation of temperature data loggers.
- Installation of online multi-parameter sensor systems of the type “pipe::scan” for online analysis of up to 10 measured parameters.
- Evaluation of existing data (findings databases of the federal states, Federal Environment Agency and hydrographic services).
- Modelling of soil and drinking water temperatures with the inclusion of external data products.

Online multiparameter sensor system - pipe::scan

The pipe::scan is a sensor system for monitoring the drinking water quality in pipes under pressure. It measures up to 10 parameters simultaneously: Organic parameters (TOC, DOC, UV254/UVT), turbidity, colour, chlorine, ORP, conductivity, temperature and pressure.

The installation is performed on the pipe under pressure by utilising Hawle pipe saddles (either from DN100 - DN600). Via a “stare”, the water from the pressurised pipe is pushed into the pipe::scan flow cell. A nano pump ensures that the water is pumped through the flow cell and back into the pipe without water loss and even during periods of stagnation.

The sensors in the pipe::scan are well known, reliable s:scan sensors which have been on the market for many years. What’s unique about these sensors is that they are fully pressure-resistant: the i::scan – an optical miniature spectrophotometer with LED technology and automatic brush cleaning for the measurement of organics (TOC, DOC, UV254, UVT), turbidity and colour, the chlori::lyser – the only pressure-resistant amperometric sensor for detection of free chlorine on the market, the pH::lyser – a very robust pH sensor without salt bridge with a polymer reference electrode, the cond: tyser – a maintenance-free 4-electrode conductivity sensor with an integrated temperature sensor suitable for industrial use, and a miniature pressure sensor. All these sensors are optimised for the use in pressurised pipes, are characterised by extremely low maintenance requirements and have been used for years in drinking water applications all over the world.

A filter in the inlet ensures that no large particles penetrate into the flow cell and a ventilation valve ensures an air free measuring environment inside the cell.

The water quality data can be sent to any central database via almost any protocol using the s:can terminal com::cube, and the stations can be reached at any time in real time via VPN connection and are 100% remote controllable.

Results, measurement data

Interesting trends could be identified in all pipe::scan installation locations. These trends were compared with the process data from the waterworks operators, including operating data, thus enabling reliable interpretations. Some examples are given below:

Figure 4: The water at this measurement location is received from relatively distant sources, which have their own characteristics depending on their distance from the Danube. Therefore, periodic turbidity and organic peaks occur, but also singular peaks.

Figure 5: This installation site on a reservoir is supplied by two sources: from a stable, more distant source, and from a water treatment plant with two well fields from the immediate environment. The wells are operated alternately. Here, peaks in turbidity or events in conductivity and organic matter are sometimes visible during start-up when switching resources. By means of online measurement technology, dynamic processes are made visible and documented here. Before the installation even experienced personnel could only guess.

Outlook

The safety and quality of the drinking water supply will remain the focus of attention in the future due to the effects of climatic changes. Modelling strategies for the development of drinking water temperatures and quality parameters in the distribution to the end customer are essential tools for the estimation of future developments and support, for example, the planning of the route and the pipeline construction. In view of the changes in microbiology, it is necessary to record the variety of influencing factors and to arrive at an assessment of the climatic influence. It is important to stress that not all consequences can be predicted and continuous monitoring of biotic and abiotic parameters is essential.

Online methods for extensive water quality detection provide a valuable database, which can be compared to a variety of processes due to its resolution and its extremely useful for understanding the drinking water supply system. The possibility of early warnings when changes or contaminations occur, supplements those insights and ensures a reliable water supply during continuous operation.

In the long run, online measurement technology should be seen as a relatively small investment compared to the benefits for the water supplier, as it first of all helps to keep a constant eye on the water quality and secure the water quality even under changing environmental conditions with regard to microbiological and chemical properties. Secondly, it helps to recognise trends and one-time events in time, and last but not least, supports to optimise the operation of the infrastructure from an economic point of view.

Authors

Dipl.-Ing. Christoph Schönher, University of Natural Resources and Life Sciences Vienna, Institute of Sanitary Engineering, Industrial Water Management and Water Pollution Control (SIG), christoph.schoenher@boku.ac.at

Mag. (FH) Ing. Robert Wurm, DI Andreas Weingartner, scan Messtechnik GmbH, Vienna, Austria, Tel. +43 1 2197393-0, rwurm@s-can.at, aweingartner@s-can.at, www.s-can.at

© Mag. (FH) Ing. Robert Wurm, DI Andreas Weingartner, scan Messtechnik GmbH, Vienna, Austria, Tel. +43 1 2197393-0, rwurm@s-can.at, aweingartner@s-can.at, www.s-can.at

Figure 3: The cover of the pipe::scan provides additional security for the sensors and the operators

Figure 5: This installation site on a reservoir is supplied by two sources

Figure 4: The water at this measurement location is received from relatively distant sources

October 2020 | AWE International

38